周报

第十四周:

    一、论文阅读部分:

        1、数据库作业:读一篇相关论文,交报告;

        2、计算机视觉作业:读一篇相关论文,PPT讲解;

        3、数字图像处理作业:以小组为单位找三篇论文;(代码实现部分耗时过多,图像融合的论文没找)

    二、任务部分:

        1、关于算法实现部分:把PCA、ICA算法看懂,前者还好,后者资源不太多(还有点问题,没吃透),以及融合的部分还有待继续理解。

        2、抠图放大部分:暂时没接着做。(对MATLAB还不是很熟悉,还要看网上相关代码实现)

第十三周:

    一、论文阅读部分:

        1、一篇PCA相关论文,质量不高。

    二、任务部分:

        1、关于算法实现部分:a、训练基函数部分进度:在图像的分割排序部分搞定,b、后面关于融合部分确定内容不多,细节还没认真看。

        2、抠图放大部分:暂时没接着做。(看书花了多数时间,后面会进行调整,先把给定论文算法实现尽快完成)

第十二周:

    一、论文阅读部分:

        1、读基于独立分量分析的图像融合算法和一种基于ICA的多源图像融合算法,尝试进一步看懂上周要求实现的算法。

    二、任务部分:

        1、关于算法实现部分:还在进行中。

        2、抠图放大部分:暂时没接着做。


第十一周:

    一、论文阅读部分:

        1、Pixel-based and Region-based Image Fusionschemes using ICA bases

    二、任务部分:

        1、抠图放大再放回:寻找及确定一种图像质量评估算法。

        2、代码实现:

    三、学习部分:

        1、《QtCreator快速入门第二版》的1、2章:对比学习IDE与编辑器+编译器的不同(了解大概的原理),以及IDE在生成某类项目时自动生成的代码与手动编辑的区别对比。(自动挡和手动挡?)

第十周:

    本周需要尝试将图片放大,了解评估算法以及确定接下来的工作安排:

    1、假定:假定不对原始图像做更改,仅仅是确定放大后人像在原先背景的最优位置。(如果假定和实际任务要求有理解方面的偏差,请指正)

    2、思路:(较为简单的方式)穷举对比所有位置,使用评估算法评估所有情况,最后由评估算法综合对比(打分等?)确定最优位置即最自然的位置。(如有理解偏差,请指正)

    3、后续工作安排:按照上述思路,可以将任务剥分为:(1)确定并使用一种现有图像质量评估算法(2)将人像部分放到原图背景各个位置,评估对比。

    4、目前进度:放大完人像,寻找及对比各图像质量评估算法。

第九周:

    本周需要尝试将图片中的人物部分抠出:(刚开始尝试的多聚焦图像融合代码里的抠图部分,后面又粗略尝试了使用别的抠图方法KNN-matting点击打开链接

    方法一:多聚焦图像融合代码(抠图实现)中的抠图部分

        一、条件(假定):1、聚焦区域即为人像区域;2、人像部分和普通物体的实际要求相似(先用普通物体:盆栽暂替人像)

        二、效果(结果):1、原图(图1)2、前景盆栽部分(图2)3、背景部分(图3)

图1 原图

图2 前景盆栽部分

  

图3 背景部分

    方法二:KNN-matting(粗略尝试,没有深入了解,可能对原图要求较多?)


图4 原图

图5 抠出布偶部分剩余部分


图六 原算法提供的样图
展开阅读全文

没有更多推荐了,返回首页