迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:
(1) 选一个方程的近似根,赋给变量x0;
(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;
(3) 当x0与x1的差的绝对值还大于指定的精度要求时,重复步骤(2)的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:
【算法】迭代法求方程的根
{ x0=初始近似根;
do {
x1=x0;
x0=g(x1); /*按特定的方程计算新的近似根*/
} while ( fabs(x0-x1)>Epsilon);
printf(“方程的近似根是%f/n”,x0);
}
迭代算法也常用于求方程组的根,令
X=(x0,x1,…,xn-1)
设方程组为:
xi=gi(X) (I=0,1,…,n-1)
则求方程组根的迭代算法可描述如下:
【算法】迭代法求方程组的根
{ for (i=0;i<n;i++)
x[i]=初始近似根;
do {
for (i=0;i<n;i++)
y[i]=x[i];
for (i=0;i<n;i++)
x[i]=gi(X);
for (delta=0.0,i=0;i<n;i++)
if (fabs(y[i]-x[i])>delta) delta=fabs(y[i]-x[i]);
} while (delta>Epsilon);
for (i=0;i<n;i++)
printf(“变量x[%d]的近似根是 %f”,I,x[i]);
printf(“/n”);
}
具体使用迭代法求根时应注意以下两种可能发生的情况:
(1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;
(2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。