机器学习读书笔记

第一章

引言

介绍一些常识引入什么是机器学习,机器学习的一些术语数据,规律,泛化,假设空间归纳偏好。

1,、假设空间:

假设空间:监督学习的目的在于学习一个由输入到输出的映射,这一映射由模型来表示。换句话说,学习的目的就在于找到最好的这样的模型。模型属于由输入空间到输出空间的映射集合,这个集合就是假设空间(hypothesis space)。假设空间的确定意味着学习范围的确定。

样本空间是由一个个确切的样本组成的,样本的每一个特征值都是确定的。假设空间是由一个个假设构成的,假设的特征值可以是确定的,如色泽是青绿,也可以是特殊的,如色泽“*”。

2,、奥卡姆剃刀

它是是一种常用的、自然科学研究中最基本的原则,即“有多个假设与观察一致”,则选择最简单的那个。

3,、没有免费午餐(NFL)

无论学习算法a多聪明,学习算法b多笨拙,他们的期望性能竟然合同。(a,b算法对同以问题不能说谁更优(理论上,实际有偏好性))

阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页