今天我们主要来看看机器学习中分类器的一些评价指标,主要包括召回率(recall), 精度(precision), 准确率(accuracy), F1分数(F1-score). 大多数刚接触分类器的同学可能对这几个指标在二分类下的计算方式比较清楚,但是放到多分类任务上就有些模糊。那我们今天就仔细来看一下这几个指标在二分类和多分类下的计算方式。
一、二分类的评价指标
首先我们来看一个非常熟悉的表格:
|
|
|
预测的类 |
|
|
|
|
|
Yes |
No |
合计 |
| 实际的类 |
Yes |
TP |
FN |
P |
| No |
FP |
TN |
||

本文详细介绍了机器学习中分类器的评价指标,包括召回率、精度、准确率和F1分数,分别解释了这些指标在二分类和多分类任务中的计算方式,并阐述了它们的重要性。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



