摩尔投票算法(Moore‘s Voting Algorithm)及例题

上午打力扣第 354 场周赛最后十五分钟用摩尔投票算法直接秒了第三题。

摩尔投票算法简介

摩尔投票算法最早由 Robert S. Boyer 和 J Strother Moore 在 1981 年的论文 “MJRTY—A Fast Majority Vote Algorithm” 中提出。这篇论文描述了摩尔投票算法的原理和证明,并展示了它在实际应用中的高效性。

论文的引用信息如下:

Title: MJRTY—A Fast Majority Vote Algorithm

Authors: Robert S. Boyer, J Strother Moore

Year: 1981 Published in: Automated

Reasoning: Essays in Honor of Woody Bledsoe

Publisher: Springer-Verlag

Pages: 105-117

具体算法证明大家可以去查看相关论文

摩尔投票算法算法思想

摩尔投票算法(Moore’s Voting Algorithm)是一种用于在数组中寻找多数元素的有效方法。所谓多数元素,是指在数组中出现次数超过一半以上的元素。最经典的例子就是用于众数的寻找。

摩尔投票算法的基本思想很简单,它通过消除不同元素之间的对抗来找到可能的多数元素。算法遍历数组并维护两个变量:候选元素和其对应的票数。开始时,候选元素为空,票数为0。然后对于数组中的每个元素,执行以下步骤:

  1. 如果票数为0,将当前元素设为候选元素,并将票数设置为1。
  2. 如果当前元素等于候选元素,则票数加1。
  3. 如果当前元素不等于候选元素,则票数减1。

这样做的效果是,相同元素的票数会相互抵消,不同元素的对抗也会导致票数减少。由于多数元素的出现次数超过一半以上,所以最终留下的候选元素就很有可能是多数元素。

遍历完整个数组后,候选元素即为多数元素的候选者。然后我们需要进一步验证候选元素是否真的是多数元素,因为可能存在没有多数元素的情况。我们再次遍历数组,统计候选元素的出现次数,如果发现它的出现次数超过了一半以上,则确认它为多数元素;否则,表示没有多数元素。

以下是摩尔投票算法的伪代码:

function findMajorityElement(nums):
    candidate = None
    count = 0

    for num in nums:
        if count == 0:
            candidate = num
        if candidate == num:
            count += 1
        else:
            count -= 1

    # 进行第二次遍历,验证 candidate 是否为多数元素
    count = 0
    for num in nums:
        if num == candidate:
            count += 1

    if count > len(nums) / 2:
        return candidate
    else:
        return None

摩尔投票算法的时间复杂度为O(n),空间复杂度为O(1),是一种高效的寻找多数元素的算法。

摩尔投票算法经典题目

169. 多数元素

169. 多数元素

给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在多数元素。

image-20230716151822817

解题思路:

直接摩尔投票算法秒了

class Solution {
   
   
public:
    int majorityElement(vector<int>& nums
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值