JDK 8 新特性 | 强大的 Stream API

了解 Stream

Java8 中有两大最为重要的改变。第一个是 Lambda 表达式;另外一个则是 Stream API( java.util.stream .*) 。

Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。

使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。

什么是 Stream

流 (Stream) 到底是什么呢 ?是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。

“集合讲的是数据,流讲的是计算!

注意:

  1. Stream 自己不会存储元素;
  2. Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream;
  3. Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。
Stream 的操作三个步骤

  • 创建 Stream:一个数据源(如:集合、数组),获取一个流;
  • 中间操作:一个中间操作链,对数据源的数据进行处理;
  • 终止操作( 终端操作):一个终止操作,执行中间操作链,并产生结果。
+--------------------+      +------+     +------+     +---+     +-------+
| stream of elements |----> |filter|---> |sorted|---> |map|---> |终止操作|
+--------------------+      +------+     +------+     +---+     +-------+
创建 Stream

由集合创建流

Java8 中的 Collection 接口被扩展,提供了两个获取流的方法 :

  • default Stream<E> stream():返回一个顺序流;
  • default Stream<E> parallelStream() :返回一个并行流。

由数组创建流

Java8 中的 Arrays 的静态方法 stream() 可以获取数组流:

  • static <T> Stream<T> stream(T[] array):返回一个流

重载形式,能够处理对应基本类型的数组:

  • public static IntStream stream(int[] array)
  • public static LongStream stream(long[] array)
  • public static DoubleStream stream(double[] array)

由值创建流

可以使用静态方法 Stream.of(),通过显示值创建一个流。它可以接收任意数量的参数。

  • public static<T> Stream<T> of(T... values):返回一个流

由函数创建流:创建无限流

可以使用静态方法 Stream.iterate()Stream.generate(),创建无限流。

  • 迭代:public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
  • 生成:public static<T> Stream<T> generate(Supplier<T> s)
/**                                                                      
 * 1. 创建 Stream                                                          
 */                                                                      
@Test                                                                    
public void createStram() {                                              
    /**                                                                  
     * 1. Collection 提供了两个方法 stream() 与 parallelStream()                 
     */                                                                  
    List<String> list = new ArrayList<>();                               
    Stream<String> lsStream = list.stream(); // 获取一个顺序流                  
    Stream<String> lsParallelStream = list.parallelStream(); // 获取一个并行流  

    /**                                                                  
     * 2. 通过 Arrays 中的 stream() 获取一个数组流                                  
     */                                                                  
    Integer[] nums = new Integer[10];                                    
    Stream<Integer> arrayStream = Arrays.stream(nums);                   

    /**                                                                  
     * 3. 通过 Stream 类中静态方法 of()                                          
     */                                                                  
    Stream<Integer> intStream = Stream.of(1, 2, 3, 4, 5, 6);             

    /**                                                                  
     * 4. 创建无限流                                                          
     */                                                                  
    // 迭代                                                                
    Stream<Integer> stream3 = Stream.iterate(0, (x) -> x + 2).limit(10); 
    stream3.forEach(System.out::println);                                

    // 生成                                                                
    Stream<Double> stream4 = Stream.generate(Math::random).limit(2);     
    stream4.forEach(System.out::println);                                

}                                                                        
Stream 的中间操作

多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全部处理,称为“惰性求值”

筛选与切片

方法描述
filter(Predicate p p)接收 Lambda ,从流中排除某些元素。
distinct()筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素
limit(long maxSize)截断流,使其元素不超过给定数量。
skip(long n)跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补

使用示例:

@Test                                                                      
public void testFilter() {                                                 
    // 所有的中间操作不会做任何的处理                                                     
    Stream<Employee> stream = emps.stream()                                
                                .filter((e) -> {                           
                                            System.out.println("测试中间操作");  
                                            return e.getAge() <= 35;       
                                        });                                

    // 只有当做终止操作时,所有的中间操作会一次性的全部执行,称为“惰性求值”                                 
    stream.forEach(System.out::println);                                   

    System.out.println("-------------------------------------------");     

    emps.stream()                                                          
        .filter((e) -> {                                                   
                    System.out.println("短路!"); // && ||                    
                    return e.getSalary() >= 5000;                          
                })                                                         
        .limit(1)                                                          
        .forEach(System.out::println);                                     

    System.out.println("-------------------------------------------");     

    emps.parallelStream()                                                  
        .filter((e) -> e.getSalary() >= 5000)                              
        .skip(1)                                                           
        .forEach(System.out::println);                                     

    System.out.println("-------------------------------------------");     

    emps.stream()                                                          
        .distinct()                                                        
        .forEach(System.out::println);                                     
}                                                                          

运行结果:

测试中间操作
测试中间操作
Employee [id=101, name=张三, age=18, salary=9999.99, status=null]
测试中间操作
Employee [id=103, name=王五, age=28, salary=3333.33, status=null]
-------------------------------------------
短路!
Employee [id=102, name=李四, age=59, salary=6666.66, status=null]
-------------------------------------------
Employee [id=101, name=张三, age=18, salary=9999.99, status=null]
-------------------------------------------
Employee [id=102, name=李四, age=59, salary=6666.66, status=null]
Employee [id=101, name=张三, age=18, salary=9999.99, status=null]
Employee [id=103, name=王五, age=28, salary=3333.33, status=null]

映射

方法描述
map(Function f)接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
mapToDouble(ToDoubleFunction f)接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 DoubleStream。
mapToInt(ToIntFunction f)接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 IntStream。
mapToLong(ToLongFunction f)接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 LongStream。
flatMap(Function f)接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流

使用示例:

@Test                                                                                               
public void testMapping(){                                                                          

    Stream<String> strStream = emps.stream().map((e) -> e.getName());                               
    strStream.forEach(System.out::println);                                                         

    System.out.println("-------------------------------------------");                              

    List<String> strList = Arrays.asList("aaa", "bbb", "ccc");                                      
    strStream = strList.stream().map(String::toUpperCase);                                          
    strStream.forEach(System.out::println);                                                         

    System.out.println("-------------------------------------------");                              

    Stream<Stream<Character>> streamOfStream = strList.stream().map(StreamAPI_Mid::filterCharacter);
    streamOfStream.forEach((sm) -> {sm.forEach(System.out::println);});                             

    System.out.println("---------------------------------------------");                            

    // 将所有流连接成一个流                                                                                   
    Stream<Character> stream = strList.stream().flatMap(StreamAPI_Mid::filterCharacter);            
    stream.forEach(System.out::println);                                                            
}                                                                                                   

运行结果:

李四
张三
王五
-------------------------------------------
AAA
BBB
CCC
-------------------------------------------
a
a
a
b
b
b
c
c
c
---------------------------------------------
a
a
a
b
b
b
c
c
c

排序

方法描述
sorted()产生一个新流,其中按自然顺序排序
sorted(Comparator comp)产生一个新流,其中按比较器顺序排序
Stream 的终止操作

终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例如:List、Integer,甚至是 void 。

查找与匹配

方法描述
allMatch(Predicate p)检查是否匹配所有元素
anyMatch(Predicate p)检查是否至少匹配一个元素
noneMatch(Predicate p)检查是否没有匹配所有元素
findFirst()返回第一个元素
findAny()返回当前流中的任意元素
count()返回流中元素总数
max(Comparator c)返回流中最大值
min(Comparator c)返回流中最小值
forEach(Consumer c)内部迭代(使用 Collection 接口需要用户去做迭代,称为外部迭代 。相反, Stream API 使用内部迭代 —— 它帮你把迭代做了)

使用示例:

@Test                                                                                              
public void testMatch(){                                                                           
        boolean bl = emps.stream()                                                                 
                        .allMatch((e) -> e.getStatus().equals(Status.BUSY));                       
        System.out.println(bl);                                                                    

        boolean bl1 = emps.stream()                                                                
                        .anyMatch((e) -> e.getStatus().equals(Status.BUSY));                       
        System.out.println(bl1);                                                                   

        boolean bl2 = emps.stream()                                                                
                        .noneMatch((e) -> e.getStatus().equals(Status.BUSY));                      
        System.out.println(bl2);                                                                   
}                                                                                                  

@Test                                                                                              
public void testFind(){                                                                            
    Optional<Employee> op = emps.stream()                                                          
                                .sorted((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()))
                                .findFirst();                                                      
    System.out.println(op.get());                                                                  

    System.out.println("--------------------------------");                                        

    op = emps.parallelStream()                                                                     
             .filter((e) -> e.getStatus().equals(Status.FREE))                                     
             .findAny();                                                                           
    System.out.println(op.get());                                                                  
}                                                                                                  

@Test                                                                                              
public void testMaxOrMin(){                                                                        
    long count = emps.stream()                                                                     
                     .filter((e) -> e.getStatus().equals(Status.FREE))                             
                     .count();                                                                     
    System.out.println(count);                                                                     

    Optional<Double> op = emps.stream()                                                            
                              .map(Employee::getSalary)                                            
                              .max(Double::compare);                                               
    System.out.println(op.get());                                                                  

    Optional<Employee> op2 = emps.stream()                                                         
                                 .min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary())); 
    System.out.println(op2.get());                                                                 

    //注意:流进行了终止操作后,不能再次使用                                                                          
}                                                                                                  

运行结果:

false
true
false


Employee [id=103, name=王五, age=28, salary=3333.33, status=VOCATION]
--------------------------------
Employee [id=104, name=赵六, age=8, salary=7777.77, status=FREE]


3
9999.99
Employee [id=103, name=王五, age=28, salary=3333.33, status=VOCATION]

归约

方法描述
reduce(T iden, BinaryOperator b)可以将流中元素反复结合起来,得到一个值。返回 T
reduce(BinaryOperator b)可以将流中元素反复结合起来,得到一个值。返回 Optional<T>

备注:map 和 reduce 的连接通常称为 map-reduce 模式,因 Google 用它来进行网络搜索而出名。

使用示例:

@Test                                                              
public void testReduce() {                                         
    List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);      

    Integer sum = list.stream()                                    
                      .reduce(0, (x, y) -> x + y);                 
    System.out.println(sum);                                       

    System.out.println("----------------------------------------");

    Optional<Double> op = emps.stream()                            
                              .map(Employee::getSalary)            
                              .reduce(Double::sum);                
    System.out.println(op.get());                                  
}                                                                  

运行结果:

55
----------------------------------------
48888.84000000001

收集

方法描述
collect(Collector c)将流转换为其他形式。接收一个Collector接口的实现,用于给Stream中元素做汇总的方法

Collector 接口中方法的实现决定了如何对流执行收集操作(如收集到 List、Set、Map)。但是 Collectors 实用类提供了很多静态方法,可以方便地创建常见收集器实例,具体方法与实例如下表:

方法返回类型作用
toListList<T>把流中元素收集到List
toSetSet<T>把流中元素收集到Set
toCollectionCollection<T>把流中元素收集到创建的集合
countingLong计算流中元素的个数
summingIntInteger对流中元素的整数属性求和
averagingIntDouble计算流中元素Integer属性的平均值
summarizingIntIntSummaryStatistics收集流中Integer属性的统计值。如:平均值
joiningString连接流中每个字符串
maxByOptional<T>根据比较器选择最大值
minByOptional<T>根据比较器选择最小值
reducing归约产生的类型从一个作为累加器的初始值开始,利用BinaryOperator与流中元素逐个结合,从而归约成单个值
collectingAndThen转换函数返回的类型包裹另一个收集器,对其结果转换函数
groupingByMap<K, List<T>>根据某属性值对流分组,属性为K,结果为V
partitioningByMap<Boolean, List<T>>根据true或false进行分区

示例:源码地址

List<Employee> emps = list.stream().collect(Collectors.toList());

Set<Employee> emps = list.stream().collect(Collectors.toSet());

Collection<Employee> emps = list.stream().collect(Collectors.toCollection(ArrayList::new));

long count = list.stream().collect(Collectors.counting());

int total = list.stream().collect(Collectors.summingInt(Employee::getSalary));

double avg = list.stream().collect(Collectors.averagingInt(Employee::getSalary));

IntSummaryStatistics iss = list.stream().collect(Collectors.summarizingInt(Employee::getSalary));

String str = list.stream().map(Employee::getName).collect(Collectors.joining());

Optional<Emp> max = list.stream().collect(Collectors.maxBy(comparingInt(Employee::getSalary)));

Optional<Emp> min = list.stream().collect(Collectors.minBy(comparingInt(Employee::getSalary)));

int total = list.stream().collect(Collectors.reducing(0, Employee::getSalar, Integer::sum));

int how = list.stream().collect(Collectors.collectingAndThen(Collectors.toList(), List::size));

Map<Emp.Status, List<Emp>> map = list.stream().collect(Collectors.groupingBy(Employee::getStatus));

Map<Boolean,List<Emp>> vd = list.stream().collect(Collectors.partitioningBy(Employee::getManage));
并行流与串行流

并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。

Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。Stream API 可以声明性地通过 parallel()sequential() 在并行流与顺序流之间进行切换。





源码地址:https://gitee.com/liupeifeng3514/JDK8_New_Features

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值