了解 Stream
Java8 中有两大最为重要的改变。第一个是 Lambda 表达式;另外一个则是 Stream API( java.util.stream .*) 。
Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。
使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。
什么是 Stream
流 (Stream) 到底是什么呢 ?是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。
“集合讲的是数据,流讲的是计算!
注意:
- Stream 自己不会存储元素;
- Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream;
- Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。
Stream 的操作三个步骤
- 创建 Stream:一个数据源(如:集合、数组),获取一个流;
- 中间操作:一个中间操作链,对数据源的数据进行处理;
- 终止操作( 终端操作):一个终止操作,执行中间操作链,并产生结果。
+--------------------+ +------+ +------+ +---+ +-------+
| stream of elements |----> |filter|---> |sorted|---> |map|---> |终止操作|
+--------------------+ +------+ +------+ +---+ +-------+
创建 Stream
由集合创建流
Java8 中的 Collection 接口被扩展,提供了两个获取流的方法 :
default Stream<E> stream()
:返回一个顺序流;default Stream<E> parallelStream()
:返回一个并行流。
由数组创建流
Java8 中的 Arrays 的静态方法 stream()
可以获取数组流:
static <T> Stream<T> stream(T[] array)
:返回一个流
重载形式,能够处理对应基本类型的数组:
- public static IntStream stream(int[] array)
- public static LongStream stream(long[] array)
- public static DoubleStream stream(double[] array)
由值创建流
可以使用静态方法 Stream.of()
,通过显示值创建一个流。它可以接收任意数量的参数。
public static<T> Stream<T> of(T... values)
:返回一个流
由函数创建流:创建无限流
可以使用静态方法 Stream.iterate()
和Stream.generate()
,创建无限流。
- 迭代:
public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
- 生成:
public static<T> Stream<T> generate(Supplier<T> s)
/**
* 1. 创建 Stream
*/
@Test
public void createStram() {
/**
* 1. Collection 提供了两个方法 stream() 与 parallelStream()
*/
List<String> list = new ArrayList<>();
Stream<String> lsStream = list.stream(); // 获取一个顺序流
Stream<String> lsParallelStream = list.parallelStream(); // 获取一个并行流
/**
* 2. 通过 Arrays 中的 stream() 获取一个数组流
*/
Integer[] nums = new Integer[10];
Stream<Integer> arrayStream = Arrays.stream(nums);
/**
* 3. 通过 Stream 类中静态方法 of()
*/
Stream<Integer> intStream = Stream.of(1, 2, 3, 4, 5, 6);
/**
* 4. 创建无限流
*/
// 迭代
Stream<Integer> stream3 = Stream.iterate(0, (x) -> x + 2).limit(10);
stream3.forEach(System.out::println);
// 生成
Stream<Double> stream4 = Stream.generate(Math::random).limit(2);
stream4.forEach(System.out::println);
}
Stream 的中间操作
多个中间操作
可以连接起来形成一个流水线
,除非流水线上触发终止操作,否则中间操作不会执行任何的处理
!而在终止操作时一次性全部处理,称为“惰性求值”
。
筛选与切片
方法 | 描述 |
---|---|
filter(Predicate p p) | 接收 Lambda ,从流中排除某些元素。 |
distinct() | 筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素 |
limit(long maxSize) | 截断流,使其元素不超过给定数量。 |
skip(long n) | 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补 |
使用示例:
@Test
public void testFilter() {
// 所有的中间操作不会做任何的处理
Stream<Employee> stream = emps.stream()
.filter((e) -> {
System.out.println("测试中间操作");
return e.getAge() <= 35;
});
// 只有当做终止操作时,所有的中间操作会一次性的全部执行,称为“惰性求值”
stream.forEach(System.out::println);
System.out.println("-------------------------------------------");
emps.stream()
.filter((e) -> {
System.out.println("短路!"); // && ||
return e.getSalary() >= 5000;
})
.limit(1)
.forEach(System.out::println);
System.out.println("-------------------------------------------");
emps.parallelStream()
.filter((e) -> e.getSalary() >= 5000)
.skip(1)
.forEach(System.out::println);
System.out.println("-------------------------------------------");
emps.stream()
.distinct()
.forEach(System.out::println);
}
运行结果:
测试中间操作
测试中间操作
Employee [id=101, name=张三, age=18, salary=9999.99, status=null]
测试中间操作
Employee [id=103, name=王五, age=28, salary=3333.33, status=null]
-------------------------------------------
短路!
Employee [id=102, name=李四, age=59, salary=6666.66, status=null]
-------------------------------------------
Employee [id=101, name=张三, age=18, salary=9999.99, status=null]
-------------------------------------------
Employee [id=102, name=李四, age=59, salary=6666.66, status=null]
Employee [id=101, name=张三, age=18, salary=9999.99, status=null]
Employee [id=103, name=王五, age=28, salary=3333.33, status=null]
映射
方法 | 描述 |
---|---|
map(Function f) | 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。 |
mapToDouble(ToDoubleFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 DoubleStream。 |
mapToInt(ToIntFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 IntStream。 |
mapToLong(ToLongFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 LongStream。 |
flatMap(Function f) | 接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流 |
使用示例:
@Test
public void testMapping(){
Stream<String> strStream = emps.stream().map((e) -> e.getName());
strStream.forEach(System.out::println);
System.out.println("-------------------------------------------");
List<String> strList = Arrays.asList("aaa", "bbb", "ccc");
strStream = strList.stream().map(String::toUpperCase);
strStream.forEach(System.out::println);
System.out.println("-------------------------------------------");
Stream<Stream<Character>> streamOfStream = strList.stream().map(StreamAPI_Mid::filterCharacter);
streamOfStream.forEach((sm) -> {sm.forEach(System.out::println);});
System.out.println("---------------------------------------------");
// 将所有流连接成一个流
Stream<Character> stream = strList.stream().flatMap(StreamAPI_Mid::filterCharacter);
stream.forEach(System.out::println);
}
运行结果:
李四
张三
王五
-------------------------------------------
AAA
BBB
CCC
-------------------------------------------
a
a
a
b
b
b
c
c
c
---------------------------------------------
a
a
a
b
b
b
c
c
c
排序
方法 | 描述 |
---|---|
sorted() | 产生一个新流,其中按自然顺序排序 |
sorted(Comparator comp) | 产生一个新流,其中按比较器顺序排序 |
Stream 的终止操作
终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例如:List、Integer,甚至是 void 。
查找与匹配
方法 | 描述 |
---|---|
allMatch(Predicate p) | 检查是否匹配所有元素 |
anyMatch(Predicate p) | 检查是否至少匹配一个元素 |
noneMatch(Predicate p) | 检查是否没有匹配所有元素 |
findFirst() | 返回第一个元素 |
findAny() | 返回当前流中的任意元素 |
count() | 返回流中元素总数 |
max(Comparator c) | 返回流中最大值 |
min(Comparator c) | 返回流中最小值 |
forEach(Consumer c) | 内部迭代(使用 Collection 接口需要用户去做迭代,称为外部迭代 。相反, Stream API 使用内部迭代 —— 它帮你把迭代做了) |
使用示例:
@Test
public void testMatch(){
boolean bl = emps.stream()
.allMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl);
boolean bl1 = emps.stream()
.anyMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl1);
boolean bl2 = emps.stream()
.noneMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl2);
}
@Test
public void testFind(){
Optional<Employee> op = emps.stream()
.sorted((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()))
.findFirst();
System.out.println(op.get());
System.out.println("--------------------------------");
op = emps.parallelStream()
.filter((e) -> e.getStatus().equals(Status.FREE))
.findAny();
System.out.println(op.get());
}
@Test
public void testMaxOrMin(){
long count = emps.stream()
.filter((e) -> e.getStatus().equals(Status.FREE))
.count();
System.out.println(count);
Optional<Double> op = emps.stream()
.map(Employee::getSalary)
.max(Double::compare);
System.out.println(op.get());
Optional<Employee> op2 = emps.stream()
.min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));
System.out.println(op2.get());
//注意:流进行了终止操作后,不能再次使用
}
运行结果:
false
true
false
Employee [id=103, name=王五, age=28, salary=3333.33, status=VOCATION]
--------------------------------
Employee [id=104, name=赵六, age=8, salary=7777.77, status=FREE]
3
9999.99
Employee [id=103, name=王五, age=28, salary=3333.33, status=VOCATION]
归约
方法 | 描述 |
---|---|
reduce(T iden, BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回 T |
reduce(BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回 Optional<T> |
备注:map 和 reduce 的连接通常称为 map-reduce 模式,因 Google 用它来进行网络搜索而出名。
使用示例:
@Test
public void testReduce() {
List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
Integer sum = list.stream()
.reduce(0, (x, y) -> x + y);
System.out.println(sum);
System.out.println("----------------------------------------");
Optional<Double> op = emps.stream()
.map(Employee::getSalary)
.reduce(Double::sum);
System.out.println(op.get());
}
运行结果:
55
----------------------------------------
48888.84000000001
收集
方法 | 描述 |
---|---|
collect(Collector c) | 将流转换为其他形式。接收一个Collector接口的实现,用于给Stream中元素做汇总的方法 |
Collector
接口中方法的实现决定了如何对流执行收集操作(如收集到 List、Set、Map)。但是 Collectors
实用类提供了很多静态方法,可以方便地创建常见收集器实例,具体方法与实例如下表:
方法 | 返回类型 | 作用 |
---|---|---|
toList | List<T> | 把流中元素收集到List |
toSet | Set<T> | 把流中元素收集到Set |
toCollection | Collection<T> | 把流中元素收集到创建的集合 |
counting | Long | 计算流中元素的个数 |
summingInt | Integer | 对流中元素的整数属性求和 |
averagingInt | Double | 计算流中元素Integer属性的平均值 |
summarizingInt | IntSummaryStatistics | 收集流中Integer属性的统计值。如:平均值 |
joining | String | 连接流中每个字符串 |
maxBy | Optional<T> | 根据比较器选择最大值 |
minBy | Optional<T> | 根据比较器选择最小值 |
reducing | 归约产生的类型 | 从一个作为累加器的初始值开始,利用BinaryOperator与流中元素逐个结合,从而归约成单个值 |
collectingAndThen | 转换函数返回的类型 | 包裹另一个收集器,对其结果转换函数 |
groupingBy | Map<K, List<T>> | 根据某属性值对流分组,属性为K,结果为V |
partitioningBy | Map<Boolean, List<T>> | 根据true或false进行分区 |
示例:源码地址
List<Employee> emps = list.stream().collect(Collectors.toList());
Set<Employee> emps = list.stream().collect(Collectors.toSet());
Collection<Employee> emps = list.stream().collect(Collectors.toCollection(ArrayList::new));
long count = list.stream().collect(Collectors.counting());
int total = list.stream().collect(Collectors.summingInt(Employee::getSalary));
double avg = list.stream().collect(Collectors.averagingInt(Employee::getSalary));
IntSummaryStatistics iss = list.stream().collect(Collectors.summarizingInt(Employee::getSalary));
String str = list.stream().map(Employee::getName).collect(Collectors.joining());
Optional<Emp> max = list.stream().collect(Collectors.maxBy(comparingInt(Employee::getSalary)));
Optional<Emp> min = list.stream().collect(Collectors.minBy(comparingInt(Employee::getSalary)));
int total = list.stream().collect(Collectors.reducing(0, Employee::getSalar, Integer::sum));
int how = list.stream().collect(Collectors.collectingAndThen(Collectors.toList(), List::size));
Map<Emp.Status, List<Emp>> map = list.stream().collect(Collectors.groupingBy(Employee::getStatus));
Map<Boolean,List<Emp>> vd = list.stream().collect(Collectors.partitioningBy(Employee::getManage));
并行流与串行流
并行流
就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。
Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。Stream API 可以声明性地通过 parallel()
与 sequential()
在并行流与顺序流之间进行切换。