数学基础复习笔记(1)——向量点积定义的证明

设两个向量a=OA=(x1,y1),b=OB=(x2,y2),两向量夹角为θ,向量点积的定义如下:

ab=|a||b|cosθ=x1x2+y1y2

第一部分的证明



第二部分的证明

第二部分的定义有什么意义?关键问题是,为什么|a||b|cosθ=x1x2+y1y2?下面就对这个问题进行证明。

OA=OB+BABA=OAOB=(x1x2,y1y2)

OAB中,根据余弦定理:|BA|2=|OA|2+|OB|22|OA||OB|cosθ,并且|BA|2=(x1x2)2+(y1y2)2|OA|2=x21+y21|OB|2=x22+y22,所以(x1x2)2+(y1y2)2=(x21+y21)+(x22+y22)2|OA||OB|cosθ,因此便有:

|OA||OB|cosθ=x1x2+y1y2

即:

|a||b|cosθ=x1x2+y1y2
来源:http://www.cnblogs.com/vive/p/4563803.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值