卷积神经网络感受野的计算

1 到底什么是“感受野”(接受野)?——Receptive Field

“感受野”的概念来源于生物神经科学,比如当我们的“感受器”,比如我们的手受到刺激之后,会将刺激传输至中枢神经,但是并不是一个神经元就能够接受整个皮肤的刺激,因为皮肤面积大,一个神经元可想而知肯定接受不完,而且我们同时可以感受到身上皮肤在不同的地方,如手、脚,的不同的刺激,如痛、痒等。这说明皮肤感受器是由很多不同的神经元控制的,那么每一个神经元所能够反映的那块感受器的区域就称之为“感受野”,感受野即每一个神经元所支配的区域,也可以说这个神经元的活动受到那一块区域的影响。
在卷积神经网络中,整个卷积运算的过程正好和上面的皮肤刺激过程类似,我们可以将原始图像对应看成感受器(皮肤),将最终的输出看成是做出反应的那个神经元。最终输出到底是什么状态(神经元的状态)所受到的初始图像哪一块区域的影响(受到那一块皮肤的刺激)不正是上面所描述的过程吗?于是我们给出感受野的定义如下:卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小;通俗点说,就是图像的最终输出的每一个特征(每一个像素)到底受到原始图像哪一部分的影响。
关于感受野的计算需要注意的是:padding并不影响感受野,stride只影响下一层featuremap的感受野,kernel size影响的是该层的感受野。

2 Down To Top计算感受野

为了更好地说明整个卷积神经网络的工作过程,下面以一个例子说明,原始图像的大小为10x10,一共设计了5个网络层,前面4个是卷积层,卷积核的大小为3x3,最后一个是池化层,大小为2x2,为了较简单的说明,本次所有的步幅stride均为1.
注意: 感受野在计算的时候不考虑“边界填充”,因为填充的边界已经不是原始图像本身的内容了,感受野描述的是输出特征到原始图像的映射关系,故而不考虑padding 。实际建模过程中可能需要填充边界,原理一样,只是计算稍微复杂点。

2.1 第一次卷积运算

在这里插入图片描述
从上面可以看出:第一层网络输出的图像中,输出结果为8x8,output1输出的每一个特征(即每一个像素)受到原始图像的3x3区域内的影响,故而第一层的感受野为3,用字母表示为
RF1=3 (每一个像素值与原始图像的3x3区域有关)

2.2 第二次卷积运算

在这里插入图片描述从上图可以看出,经历两次卷积运算之后,最终的输出图像为6x6,output2输出的每一个特征(即每一个像素)受到output1的范围影响为3x3,而output1中的这个3x3又收到原始图像的5x5的范围的影响,故而第二层的感受野为5,即 RF2=5 (每一个像素值与原始图像的5x5区域有关)

2.3 第三次卷积运算

在这里插入图片描述从上图可以看出,经历三次卷积运算之后,最终的输出图像为4x4,output3输出的每一个特征(即每一个像素)受到output2的范围影响为3x3,而output2中的这个3x3又受到output1的5x5的范围的影响,而output1中的这个5x5又受到原始图像的7x7的范围的影响,故而第三层的感受野为7,即
RF3=7 (每一个像素值与原始图像的7x7区域有关)

2.4 第四次卷积运算

在这里插入图片描述
从上图可以看出,经历四次卷积运算之后,最终的输出图像为2x2,output4输出的每一个特征(即每一个像素)受到output3的范围影响为3x3,而output3中的这个3x3又受到output2的5x5的范围的影响,而output2中的这个5x5又受到output1的7x7的范围的影响,而output1中的这个7x7又受到原始图形的9x9的范围的影响,故而第四层的感受野为9,即
RF4=9 (每一个像素值与原始图像的9x9区域有关)

2.5 第五次池化运算

从上图可以看出,经历四次卷积运算和一次池化运算之后,最终的输出图像为1x1,output5输出的每一个特征(即每一个像素)受到output4的范围影响为2x2,而output4中的这个2x2又受到output3的4x4的范围的影响,而output3中的这个4x4又受到output2的6x6的范围的影响,而output2中的这个6x6受到output1的8x8的范围的影响,而output1中的这个8x8受到原始图像的10x10的范围的影响,故而第五层的感受野为10,即
RF5=10 (每一个像素值与原始图像的10x10区域有关)

2.6 递推公式推导

从上面的过程可以看出,感受野的推导是一个递推的过程,下面将展示这一过程。

RF1=3k1(第一层的感受野,永远等于第一个卷积核的尺寸大小)k表示第几个卷积层
RF2=5k1 + (k2-1)RF1+ (k2-1)
RF3=7k1 + (k2-1) + (k3-1)RF2+ (k3-1)
RF4=9k1 + (k2-1) + (k3-1) + (k4-1)RF3+ (k4-1)
RF4=10k1 + (k2-1) + (k3-1) + (k4-1) + (k5-1)RF4+ (k5-1)

2.7 总结:

从上面可以看出,感受野的大小的求解是一个不断递进的过程,因为第一层的每一个像素的感受野始终是第一个卷积核的大小,故而RF1总是最先确定,然后以此类推,逐步求出RF2、RF3、RF4、RF5……但是上面的所有步长均为 1 ,如果每一次卷积运算的步长 stride 不为1呢,同理,这里直接给出递推公式:
R F n = R F n − 1 + ( k n − 1 ) ∗ s t r i d e n RF_{n}=RF_{n-1} + (k_{n}-1)*stride_n RFn=RFn1+(kn1)striden
其中stride_n表示的是第n次卷积的移动步幅stride。求解过程是从RF1开始的。

3 Top To Down计算感受野

3.1 计算公式

TOP To Down 计算感受野时有下面几个知识点需要知道:

  • 最后一层(卷积层或池化层)输出特征图感受野的大小等于卷积核的大小。
  • 第i层卷积层的感受野大小和第i层的卷积核大小和步长有关系,同时也与第(i+1)层感受野大小有关。
  • 计算感受野的大小时忽略了图像边缘的影响,即不考虑padding的大小。

关于感受野大小的计算方式是采用从最后一层往下计算的方法,即先计算最深层在前一层上的感受野,然后逐层传递到第一层,使用的公式可以表示如下:

R F i = ( R F i + 1 − 1 ) × s t r i d e s i + K s i z e i RF_i = (RF_{i+1}-1) \times strides_i + Ksize_i RFi=(RFi+11)×stridesi+Ksizei
其中, R F i RF_i RFi是第i层卷积层的感受野, R F i + 1 RF_{i+1} RFi+1是(i+1)层上的感受野,stride是卷积的步长,Ksize是本层卷积核的大小。
注意: 此公式与上边的Down To Top的递归公式在原理上是一致的,一个向前计算一个向后计算。

3.2 计算VGG16网络每层的感受野

在这里插入图片描述我们从最后一层的池化层开始计算感受野:

pool3:RF=2(最后一层池化层输出特征图的感受野大小等于卷积核的大小,#pool3在前一层特征图上的感受野是2x2

conv4:RF=(2-1)*1+3=4。#pool3在conv4输出的特征图上的感受野是4x4

conv3:RF=(4-1)*1+3=6。 #pool3在conv3输出的特征图上的感受野是6x6

pool2:RF=(6-1)*2+2=12。

conv2:RF=(12-1)*1+3=14。

pool1:RF=(14-1)*2+2=28。

conv1:RF=(28-1)*1+3=30。

因此,pool3输出的特征图在输入图片上的感受野为30*30。

总结

熟悉感受野的计算可以帮助分析网络结构,上面两种计算感受野的方式,可以哪种方便使用哪种。

参考文献

  1. 卷积神经网络中感受野的理解和计算
  2. 看完还不懂卷积神经网络“感受野”?那你来找我
  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值