flume 的source 、channel和sink 多种组合

本文介绍了 Apache Flume 的三种典型配置案例:多sink配置、多channel多sink配置及多source单channel单sink配置,展示了如何通过不同组件的组合实现灵活的数据收集与传输。
摘要由CSDN通过智能技术生成

原文链接: http://blog.csdn.net/u012373815/article/details/54351323


乐高积木flume

flume 有三大组件source 、channel和sink,各个组件之间都可以相互组合使用,各组件间耦合度低。使用灵活,方便。

1.多sink

channel 的内容只输出一次,同一个event 如果sink1 输出,sink2 不输出;如果sink1 输出,sink1 不输出。 最终 sink1+sink2=channel 中的数据。

配置文件如下:

a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.shell = /bin/bash -c
a1.sources.r1.channels = c1
a1.sources.r1.command = tail -F /opt/apps/logs/tail4.log



# channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100


#sink1
a1.sinks.k1.channel = c1
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = mytopic
a1.sinks.k1.kafka.bootstrap.servers = localhost:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.ki.kafka.producer.compression.type = snappy



#sink2
a1.sinks.k2.type = file_roll
a1.sinks.k2.channel = c1
#a1.sinks.k2.sink.rollInterval=0
a1.sinks.k2.sink.directory = /opt/apps/tmp

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

2.多 channel 多sink ,每个sink 输出内容一致

(memory channel 用于kafka操作,实时性高,file channel 用于 sink file 数据安全性高) 
(多channel 单 sink 的情况没有举例,个人感觉用处不广泛。)

配置文件如下:

a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.shell = /bin/bash -c
a1.sources.r1.channels = c1 c2
a1.sources.r1.command = tail -F /opt/apps/logs/tail4.log
#多个channel 的数据相同
a1.sources.r1.selector.type=replicating


# channel1
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

#channel2
a1.channels.c2.type = file
a1.channels.c2.checkpointDir = /opt/apps/flume-1.7.0/checkpoint
a1.channels.c2.dataDirs = /opt/apps/flume-1.7.0/data

#sink1
a1.sinks.k1.channel = c1
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = mytopic
a1.sinks.k1.kafka.bootstrap.servers = localhost:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.ki.kafka.producer.compression.type = snappy

#sink2
a1.sinks.k2.type = file_roll
a1.sinks.k2.channel = c2
#a1.sinks.k2.sink.rollInterval=0
a1.sinks.k2.sink.directory = /opt/apps/tmp
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

3. 多source 单 channel 单 sink

多个source 可以读取多种信息放在一个channel 然后输出到同一个地方 
配置文件如下:

a1.sources = r1 r2
a1.sinks = k1
a1.channels = c1

# source1
a1.sources.r1.type = exec
a1.sources.r1.shell = /bin/bash -c

a1.sources.r1.channels = c1
a1.sources.r1.command = tail -F /opt/apps/logs/tail4.log

# source2
a1.sources.r2.type = exec
a1.sources.r2.shell = /bin/bash -c
a1.sources.r2.channels = c1
a1.sources.r2.command = tail -F /opt/apps/logs/tail2.log


# channel1  in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100



#sink1
a1.sinks.k1.channel = c1
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = mytopic
a1.sinks.k1.kafka.bootstrap.servers = localhost:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.ki.kafka.producer.compression.type = snappy
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

flume 像乐高积木一样可以自己随心所欲将不同的组件进行搭配使用,耦合度低。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值