1.1 Homogeneous representation










在所谓的欧式空间里引入齐次坐标后(homogeneous coordinate),可以得到射影空间(the projective space)。在这个射影空间里,所有的2条不同直线相交于某一点。所有的平行直线交于无穷远处的同一点,反过来说,这些无穷远处的每一点都对应于某一类的平行直线的交点。同时可以将无穷远处所有点看成是无穷远处的一条直线的点(无穷远即为一条直线line at infinity),这条直线上的点(也可以所是无穷远处的所有点)可以称之为理想点(ideal points, or points at infinity)。可以带来很大的便捷。



一开始读这一段觉得很怪异,后来才想通。  其实这么理解就好了,射影空间里是齐次坐标,也就是一堆的等价类((1,1,1)与(2,2,2)是一个等价类)。我们可以定义(x,y,1)来标准化表示这些等价类。  然后上面的平面是直线啥的说法,其实就是平面上的点做一个标准化归一化,就变成了一条直线。 同理,直线上的点也做个归一化标准化,就是一个点了,直线上的所有点都与这个点属于同一个等价类。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/liuxingwan/article/details/49928711
文章标签: Homogeneous represen
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

1.1 Homogeneous representation

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭