LDA算法

LDA算法,最后面为什么特征值最大就是所求的情形。 这个严格的证明还没想通。

找到了, 其实证明的问题就是推广的 Rayleigh_quotient

维基里有介绍:点击打开链接


第一个链接里的是看到的最通俗易懂的入门。

点击打开链接


http://blog.csdn.net/ffeng271/article/details/7353834


http://blog.csdn.net/v_july_v/article/details/41209515


http://www.cnblogs.com/zhangchaoyang/articles/2644095.html


Matlab里面的函数fitcdiscr里似乎有LDA的实现,但是具体的使用上实在学不会,所以自己写了。

Matlab   

LDA算法代码:   


function [V, D, changed_X] = LDA(X, label)   %X 行数代表样本数,列数代表维数
%UNTITLED 此处显示有关此函数的摘要
%   此处显示详细说明

    sample_size = size(label, 2);
    feature_size = size(X, 2);

    [sorted_label, order] = sort(label)
    label(order)
    [unique_label, ia, ic] = unique(sorted_label, 'first');
    
    sorted_X = X(order,:);   
    sorted_X = zscore(sorted_X);
    
     hmo1 = HeatMap(sorted_X')
     hmo2 = HeatMap(zscore(sorted_X,0,1)')
     hmo = HeatMap(zscore(sorted_X)')   
    
    unique_label_size = size(unique_label, 2);
    ia(unique_label_size+1) = sample_size + 1
    
    sum_class_in_matrix = zeros(feature_size, feature_size);
 %   sum_class_between_matrix.resize(feature_size, feature_size);
    ave_class_X = zeros(sample_size, feature_size);
    samples_class = zeros(unique_label_size, 1);
    
    
    
%     for i=1:unique_label_size
%          target_X = sorted_X(ia(i):ia(i+1)-1,:);
%          samples_class(i,1) = ia(i+1) - ia(i);
%   
%          
%          ave_class_X(ia(i):ia(i+1)-1,:) = repmat(mean(target_X),  samples_class(i,1), 1);
%          sum_class_in_matrix = sum_class_in_matrix + cov(target_X, 1) * samples_class(i,1) ;% /sample_size
%     end
%     
%      size(mean(sorted_X))
%     sum_class_in_matrix
%     sum_class_between_matrix = cov(ave_class_X, 1) * sample_size%
%     
%      size(mean(ave_class_X))
%     
%     
%     [V, D, W] = eig(sum_class_between_matrix, sum_class_in_matrix);%, 1, 'sm'
%     V
%     changed_X = X * V
    
    
    
    
    
    
         %     end 
    
    
%     i=1:unique_label_size;
% %     for i=1:unique_label_size
%          ave_class_X(:,i) = mean(sorted_X(ia(i), ia(i+1)-1), 2);
%          
%          new_X(ia(i), ia(i+1)-1) = bsxfun(@minus, sorted_X(ia(i), ia(i+1)-1), ave_class_X(:,i));
% %     end
    
%    i = 1:
    
    
end


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/liuxingwan/article/details/51565066
个人分类: 机器学习
想对作者说点什么? 我来说一句

可实现的LDA算法代码

2014年11月14日 7.72MB 下载

文本分类算法LDA

2015年02月09日 70KB 下载

没有更多推荐了,返回首页

不良信息举报

LDA算法

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭