二叉树系列——路径系列:根节点到子节点的路径以及根节点到叶子节点的所有路径

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/liuyi1207164339/article/details/50908308

思路:当用前序遍历的方式访问到某一个节点的时候,我们把该节点添加到路径中。如果该节点的值和我们要找的值相等,则打印路径,如果不相等,则继续访问它的子节点。当前节点访问结束之后,递归函数将自动回到它的父节点。因此我们在函数退出之前要在路径上删除当前节点,以确保返回父节点时路径刚好是从根节点到父节点的路径。


下面是寻找根节点到某一特定子节点路径的代码:

//寻找某一个特定的子节点
void findPath(BinaryTreeNode*pRoot,vector<int>&path,int nToFind){
	if (pRoot==NULL)
	{
		return;
	}
	path.push_back(pRoot->m_nValue);
	if (pRoot->m_nValue==nToFind) //达到了子节点
	{
		printPath(path);
		return;      //找到了就返回,不需要再找了
	}
	if (pRoot->m_pLeft != NULL)//左子树
	{
		findPath(pRoot->m_pLeft, path,nToFind);
	}
	if (pRoot->m_pRight != NULL)//右子树
	{
		findPath(pRoot->m_pRight, path,nToFind);
	}
     path.pop_back();//在返回到父节点之前,在路径上删除当前节点
}

下面是打印path的代码:

//打印路径
void printPath(vector<int>&path){
	vector<int>::const_iterator iter = path.begin(); //打印出来
	for (; iter != path.end()-1; ++iter)
		cout << *iter << "->";
	cout << *iter;
	cout << endl;//换行
}

以上代码没有直接使用STL中的stack的原因是在stack中只能得到栈顶的元素,而我们打印路径的时候需要得到路径上的所有的点,因此实现代码的时候std::stack不是最好的选择!


下面是根节点到所有叶子节点路径的代码:

//找到所有路径
void findAllPath(BinaryTreeNode*pRoot, vector<int>&path){
	if (pRoot == NULL)
	{
		return;
	}
	path.push_back(pRoot->m_nValue);
	if (pRoot->m_pLeft == NULL&&pRoot->m_pRight == NULL) //达到了叶子节点
	{
		printPath(path);//打印路径
	}
	if (pRoot->m_pLeft!=NULL)//左子树
	{
		findAllPath(pRoot->m_pLeft, path);
	}
	if (pRoot->m_pRight!=NULL)//右子树
	{
		findAllPath(pRoot->m_pRight, path);
	}
	path.pop_back();//在返回到父节点之前,在路径上删除当前节点
}

当然,如果我们需要保存每条路径,那就需要一个额外的vector<vector<int> >用于保存每一条路径,修改后的代码如下:

vector<vector<int> > allPath;
//找到所有路径
void findAllPath(BinaryTreeNode*pRoot, vector<int>&path){
	if (pRoot == NULL)
	{
		return;
	}
	path.push_back(pRoot->m_nValue);
	if (pRoot->m_pLeft == NULL&&pRoot->m_pRight == NULL) //达到了叶子节点
	{
		printPath(path);//打印路径
		allPath.push_back(path);//保存路径
	}
	if (pRoot->m_pLeft!=NULL)//左子树
	{
		findAllPath(pRoot->m_pLeft, path);
	}
	if (pRoot->m_pRight!=NULL)//右子树
	{
		findAllPath(pRoot->m_pRight, path);
	}
	path.pop_back();//在返回到父节点之前,在路径上删除当前节点
}

以如下二叉树作为测试二叉树:


以先序的方式构建此二叉树:

//先序创建二叉树  
void CreatBTree(BinaryTreeNode *&root)
{
	int nValue = 0;
	cin >> nValue;
	if (-1 == nValue)//-1代表为空
	{
		return;
	}
	else
	{
		root = new BinaryTreeNode();
		root->m_nValue = nValue;
		CreatBTree(root->m_pLeft);
		CreatBTree(root->m_pRight);
	}
}

测试代码如下:

int main(){
	BinaryTreeNode*T=NULL;
	cout << "先序构建二叉树:" << endl;
	CreatBTree(T);
	cout << endl;
	cout << "找到所有根节点到叶子节点的路径:" << endl;
	vector<int> path;
	findAllPath(T,path);
	cout << "打印得到的所有路径:" << endl;
	printAllPath(allPath);
	path.clear();
	int nNode;
	while (true)
	{
		cout << "输入要找的子节点:" << endl;
		cin >> nNode;
		cout << "根节点到子节点"<<nNode<<"的路径:" << endl;
		findPath(T, path, nNode);
		cout << endl;
		path.clear();//清零
	}	
	return 0;
}

打印所有路径的代码如下:

//打印所有路径
void printAllPath(vector<vector<int> >&path){
	for (int i = 0; i < path.size();i++)
	{
		printPath(path[i]);
	}
}

输出结果如下所示:





阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页