质数相关问题

试除法判定质数

题目描述

给定n个正整数ai,判定每个数是否是质数。

输入格式

第一行包含整数n。

接下来n行,每行包含一个正整数ai。

输出格式

共n行,其中第 i 行输出第 i 个正整数ai是否为质数,是则输出“Yes”,否则输出“No”。

数据范围

1≤n≤100,
1≤ai≤2∗109

输入样例:

2
2
6

输出样例:

Yes
No

代码

#include<iostream>
using namespace std;

bool is_prime(int x)
{
    if(x<2) return false;
    for(int i=2;i<=x/i;++i)
    {
        if(x%i == 0)
            return false;
    }
    return true;
}
int main()
{
    int n;
    cin>>n;
    int x;
    while(n--)
    {
        cin>>x;
        if(is_prime(x)) cout<<"Yes"<<endl;
        else cout<<"No"<<endl;
    }
    return 0;
}

分解质因数

题目描述

给定n个正整数ai,将每个数分解质因数,并按照质因数从小到大的顺序输出每个质因数的底数和指数。

输入格式

第一行包含整数n。

接下来n行,每行包含一个正整数ai。

输出格式

对于每个正整数ai,按照从小到大的顺序输出其分解质因数后,每个质因数的底数和指数,每个底数和指数占一行。

每个正整数的质因数全部输出完毕后,输出一个空行。

数据范围

1≤n≤100,
1≤ai≤2∗109

输入样例:

2
6
8

输出样例:

2 1
3 1

2 3

代码

#include<iostream>
using namespace std;

void divide(int x)
{
    for(int i=2;i<=x/i;++i)
    {
        if(x%i == 0)
        {
            int s = 0;
            while(x%i == 0)
            {
                x/=i;
                s++;
            }
            printf("%d %d\n",i,s);
        }
    }
    
    if(x>1) printf("%d %d\n",x,1);
    cout<<endl;
}

int main()
{
    int n,x;
    cin>>n;
    while(n--)
    {
        cin>>x;
        divide(x);
    }
    return 0;
}

筛质数

题目描述

给定一个正整数n,请你求出1~n中质数的个数。

输入格式

共一行,包含整数n。

输出格式

共一行,包含一个整数,表示1~n中质数的个数。

数据范围

1≤n≤106

输入样例:

8

输出样例:

4

朴素筛法

#include<iostream>
using namespace std;

const int N =1000010;
bool st[N];
int primes[N],cnt;

void is_prime(int n)
{
    for(int i=2;i<=n;++i)
    {
        if(st[i]) continue;
        primes[cnt++] = i;
        for(int j = i+i;j<=n;j+=i)
        {
            st[j] = true;
        }
    }
}
int  main()
{
    int n;
    cin>>n;
    
    is_prime(n);
    cout<<cnt<<endl;
    return 0;
}

线性筛法

#include<iostream>
using namespace std;

const int N =1000010;
bool st[N];
int primes[N],cnt;

void is_prime(int n)
{
    for(int i=2;i<=n;++i)
    {
        if(!st[i]) primes[cnt++] = i;
        for(int j=0;primes[j]<=n/i;++j)
        {
            st[primes[j]*i] = true;
            if(i % primes[j] == 0) break;
        }
    }
}
int  main()
{
    int n;
    cin>>n;
    
    is_prime(n);
    cout<<cnt<<endl;
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读