算法思路:并查集,判断连通并且无环,只有一个0入度顶点。
无环条件:边数 + 1 = 顶点数。
连通条件:只有1个或者0个(回路)顶点满足 next_node[j] == j && flag[j] != 0。
//模板开始
#include <string>
#include <vector>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <fstream>
#include <map>
#include <set>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include<iomanip>
#include<string.h>
#define SZ(x) (int(x.size()))
using namespace std;
int toInt(string s){
istringstream sin(s);
int t;
sin>>t;
return t;
}
template<class T> string toString(T x){
ostringstream sout;
sout<<x;
return sout.str();
}
typedef long long int64;
int64 toInt64(string s){
istringstream sin(s);
int64 t;
sin>>t;
return t;
}
template<class T> T gcd(T a, T b){
if(a<0)
return gcd(-a, b);
if(b<0)
return gcd(a, -b);
return (b == 0)? a : gcd(b, a % b);
}
//模板结束(通用部分)
#define ifs cin
int findset(int x, int pa[])
{
return pa[x] != x ? pa[x] = findset(pa[x], pa) : x;
}
//【图论05】并查集 1003 Is It A Tree?
#define MAX_SIZE 100005
int next_node[MAX_SIZE]; //存储有向图的边
int in[MAX_SIZE]; //存储节点的入度
int out[MAX_SIZE]; //存储节点的出度
int flag[MAX_SIZE]; //标记节点是否存在
void init() //初始化
{
for(int i = 0; i < MAX_SIZE; i++)
{
next_node[i] = i;
}
memset(in, 0, sizeof(in));
memset(out, 0, sizeof(out));
memset(flag, 0, sizeof(flag));
}
int findset(int a) //找元素所在集合的代表元(因为用了路径压缩,路径压缩的主要目的是为了尽快的确定元素所在的集合)
{
while(next_node[a] != a)
{
a = next_node[a];
}
return a;
}
void union_nodes(int a, int b) //集合合并
{
int a1 = findset(a);
int b1 = findset(b);
next_node[a1] = b1;
}
int main()
{
//ifstream ifs("shuju.txt", ios::in);
int m, n;
int cases = 0;
while(ifs>>m>>n && !(m < 0 && n < 0))
{
cases++;
if(m == 0 && n == 0)
{
cout<<"Case "<<cases<<" is a tree."<<endl;
continue;
}
int bianshu = 0;
init();
bianshu++;
union_nodes(m, n);
out[m]++;
in[n]++;
flag[m]++;
flag[n]++;
while(ifs>>m>>n && !(m == 0 && n == 0)) //输入数据,建立有向图,并合并相关集合
{
//int a = data[0] - 'a';
//int b = data[strlen(data) - 1] - 'a';
bianshu++;
union_nodes(m, n);
out[m]++;
in[n]++;
flag[m]++;
flag[n]++;
}
int count = 0;
for(int j = 0; j < MAX_SIZE; j++) //计算有向图中连通分支的个数
{
if(next_node[j] == j && flag[j] != 0)
{
count++;
}
}
int root = 0;
for(int j = 0; j < MAX_SIZE; j++)
{
if(in[j] == 0 && flag[j] != 0)
{
root++;
}
}
if(root >= 2)
{
cout<<"Case "<<cases<<" is not a tree."<<endl;
continue;
}
int jiedianshu = 0;
for(int j = 0; j < MAX_SIZE; j++)
{
if(flag[j] != 0)
{
jiedianshu++;
}
}
if(jiedianshu == 1)
{
cout<<"Case "<<cases<<" is not a tree."<<endl;
}
if(count == 1 && jiedianshu == bianshu + 1)
{
cout<<"Case "<<cases<<" is a tree."<<endl;
}
else
{
cout<<"Case "<<cases<<" is not a tree."<<endl;
}
}
return 0;
}