高级优化理论与方法(十一)

Simplex

Matrix form of Simplex

min c T x c^Tx cTx
s.t. A x = b Ax=b Ax=b
x ≥ 0 x\geq 0 x0

Assume: the first m m m columns of A A A form a basis B B B.
A = [ B , D ] , c = [ c B , c D ] T , x = [ x B , x D ] T A=[B,D],c=[c_B,c_D]^T,x=[x_B,x_D]^T A=[B,D],c=[cB,cD]T,x=[xB,xD]T

⇒ \Rightarrow min c B T x B + c D T x D c_B^Tx_B+c_D^Tx_D cBTxB+cDTxD
s.t. B x B + D x D = b Bx_B+Dx_D=b BxB+DxD=b
x B , x D ≥ 0 x_B,x_D\geq 0 xB,xD0

For basic solution x = [ x B , 0 ] T x=[x_B,0]^T x=[xB,0]T
⇒ x B = B − 1 b , x = [ B − 1 b , 0 ] T , z 0 = c B T B − 1 b \Rightarrow x_B=B^{-1}b,x=[B^{-1}b,0]^T,z_0=c_B^TB^{-1}b xB=B1b,x=[B1b,0]T,z0=cBTB1b

If x D ≠ 0 x_D\neq 0 xD=0, then x B = B − 1 b − B − 1 D x D x_B=B^{-1}b-B^{-1}Dx_D xB=B1bB1DxD
⇒ z = c B T ( B − 1 b − B − 1 D x D ) + c D T x D = z 0 + ( c D T − c B T B − 1 b ) x D \Rightarrow z=c_B^T(B^{-1}b-B^{-1}Dx_D)+c_D^Tx_D=z_0+(c_D^T-c_B^TB^{-1}b)x_D z=cBT(B1bB1DxD)+cDTxD=z0+(cDTcBTB1b)xD

Define r D T = c D T − c B T B − 1 b ⇒ z = z 0 + r D T x D r_D^T=c_D^T-c_B^TB^{-1}b \Rightarrow z=z_0+r_D^Tx_D rDT=cDTcBTB1bz=z0+rDTxD

[ A b c T 0 ] = [ B D b c B T c D T 0 ] \begin{bmatrix} A&b\\ c^T&0 \end{bmatrix}=\begin{bmatrix} B&D&b\\ c_B^T&c_D^T&0 \end{bmatrix} [AcTb0]=[BcBTDcDTb0]

[ B − 1 0 0 T 1 ] ⋅ [ B D b c B T c D T 0 ] = [ I m Y y 0 c B T c D T 0 ] = [ B − 1 B B − 1 D B − 1 b c B T c D T 0 ] \begin{bmatrix} B^{-1}&0\\ 0^T&1 \end{bmatrix}\cdot \begin{bmatrix} B&D&b\\ c_B^T&c_D^T&0 \end{bmatrix}=\begin{bmatrix} I_m&Y&y_0\\ c_B^T&c_D^T&0 \end{bmatrix}=\begin{bmatrix} B^{-1}B&B^{-1}D&B^{-1}b\\ c_B^T&c_D^T&0 \end{bmatrix} [B10T01][BcBTDcDTb0]=[ImcBTYcDTy00]=[B1BcBTB1DcDTB1b0]

[ I m 0 − c B T 1 ] ⋅ [ I m Y y 0 0 c D T − c B T B − 1 D − c B T B − 1 b ] = [ I m Y y 0 0 r D T − z 0 ] \begin{bmatrix} I_m&0\\ -c_B^T&1 \end{bmatrix}\cdot \begin{bmatrix} I_m&Y&y_0\\ 0&c_D^T-c_B^TB^{-1}D&-c_B^TB^{-1}b \end{bmatrix}=\begin{bmatrix} I_m&Y&y_0\\ 0&r_D^T&-z_0 \end{bmatrix} [ImcBT01][Im0YcDTcBTB1Dy0cBTB1b]=[Im0YrDTy0z0]

Example

max 7 x 1 + 6 x 2 7x_1+6x_2 7x1+6x2
s.t. 2 x 1 + x 2 ≤ 3 2x_1+x_2\leq 3 2x1+x23
x 1 + 4 x 2 ≤ 4 x_1+4x_2\leq 4 x1+4x24
x 1 , x 2 ≥ 0 x_1,x_2\geq 0 x1,x20

⇒ \Rightarrow min − 7 x 1 − 6 x 2 -7x_1-6x_2 7x16x2
s.t. 2 x 1 + x 2 + x 3 = 3 2x_1+x_2+x_3=3 2x1+x2+x3=3
x 1 + 4 x 2 + x 4 = 4 x_1+4x_2+x_4=4 x1+4x2+x4=4
x 1 , x 2 , x 3 , x 4 ≥ 0 x_1,x_2,x_3,x_4\geq 0 x1,x2,x3,x40

[ A b c T 0 ] = [ 2 1 1 0 3 1 4 0 1 4 − 7 − 6 0 0 0 ] \begin{bmatrix} A&b\\ c^T&0 \end{bmatrix}=\begin{bmatrix} 2&1&1&0&3\\ 1&4&0&1&4\\ -7&-6&0&0&0 \end{bmatrix} [AcTb0]= 217146100010340

B = [ a 3 , a 4 ] B=[a_3,a_4] B=[a3,a4]

x = [ 0 0 3 4 ] x=\begin{bmatrix} 0\\ 0\\ 3\\ 4 \end{bmatrix} x= 0034

r B T = [ − 7 , − 6 ] ⇒ q = 1 r_B^T=[-7,-6]\Rightarrow q=1 rBT=[7,6]q=1

z 0 = 0 z_0=0 z0=0

p = a r g m i n { y i 0 y i q : y i q > 0 } p=argmin\{\frac{y_{i0}}{y_{iq}}:y_{iq}>0\} p=argmin{yiqyi0:yiq>0}
3 2 \frac{3}{2} 23 v.s. 4 1 ⇒ p = 1 \frac{4}{1}\Rightarrow p=1 14p=1

B ′ = [ a 1 , a 4 ] B'=[a_1,a_4] B=[a1,a4]

[ 1 1 2 1 2 0 3 2 0 3 1 2 − 1 2 1 5 2 0 − 5 2 7 2 0 21 2 ] \begin{bmatrix} 1&\frac{1}{2}&\frac{1}{2}&0&\frac{3}{2}\\ 0&3\frac{1}{2}&-\frac{1}{2}&1&\frac{5}{2}\\ 0&-\frac{5}{2}&\frac{7}{2}&0&\frac{21}{2} \end{bmatrix} 10021321252121270102325221

x = [ 3 2 , 0 , 0 , 5 2 ] T x=[\frac{3}{2},0,0,\frac{5}{2}]^T x=[23,0,0,25]T

z 0 = − 21 2 z_0=-\frac{21}{2} z0=221

r D T = [ − 5 2 , 7 2 ] ⇒ q = 2 r_D^T=[-\frac{5}{2},\frac{7}{2}]\Rightarrow q=2 rDT=[25,27]q=2

y i 0 y i q : 3 2 1 2 = 3 \frac{y_{i0}}{y_{iq}}: \frac{\frac{3}{2}}{\frac{1}{2}}=3 yiqyi0:2123=3 v.s. 5 2 7 2 = 5 7 ⇒ p = 2 \frac{\frac{5}{2}}{\frac{7}{2}}=\frac{5}{7}\Rightarrow p=2 2725=75p=2

[ 1 0 4 7 − 1 7 8 7 0 1 − 1 7 2 7 5 7 0 0 22 7 5 7 86 7 ] \begin{bmatrix} 1&0&\frac{4}{7}&-\frac{1}{7}&\frac{8}{7}\\ 0&1&-\frac{1}{7}&\frac{2}{7}&\frac{5}{7}\\ 0&0&\frac{22}{7}&\frac{5}{7}&\frac{86}{7} \end{bmatrix} 10001074717227172757875786

B = [ a 1 , a 2 ] , x = [ 8 7 , 5 7 , 0 , 0 ] T , z = − 86 7 , r D T = [ 22 7 , 5 7 ] ≥ 0 B=[a_1,a_2],x=[\frac{8}{7},\frac{5}{7},0,0]^T,z=-\frac{86}{7},r_D^T=[\frac{22}{7},\frac{5}{7}]\geq 0 B=[a1,a2],x=[78,75,0,0]T,z=786,rDT=[722,75]0

x x x optimal !

Degenerated Basic Solutions

Example

min − 3 4 x 1 + 20 x 2 − 1 2 x 3 + 6 x 4 -\frac{3}{4}x_1+20x_2-\frac{1}{2}x_3+6x_4 43x1+20x221x3+6x4
s.t. 1 4 x 1 − 8 x 2 − x 3 + 9 x 4 + x 5 = 0 \frac{1}{4}x_1-8x_2-x_3+9x_4+x_5=0 41x18x2x3+9x4+x5=0
1 2 x 1 − 12 x 2 − 1 2 x 3 + 3 x 4 + x 6 = 0 \frac{1}{2}x_1-12x_2-\frac{1}{2}x_3+3x_4+x_6=0 21x112x221x3+3x4+x6=0
x 3 + x 7 = 1 x_3+x_7=1 x3+x7=1
x 1 , ⋯   , x 7 ≥ 0 x_1,\cdots,x_7\geq 0 x1,,x70

[ 1 4 − 8 − 1 9 1 0 0 0 1 2 − 12 − 1 2 3 0 1 0 0 0 0 1 0 0 0 1 1 − 3 4 20 − 1 2 6 0 0 0 0 ] \begin{bmatrix} \frac{1}{4}&-8&-1&9&1&0&0&0\\ \frac{1}{2}&-12&-\frac{1}{2}&3&0&1&0&0\\ 0&0&1&0&0&0&1&1\\ -\frac{3}{4}&20&-\frac{1}{2}&6&0&0&0&0 \end{bmatrix} 412104381202012112193061000010000100010

B = [ a 5 , a 6 , a 7 ] , x = [ 0 , 0 , 0 , 0 , 0 , 0 , 1 ] T , z = 0 , q = 1 , p = 1 B=[a_5,a_6,a_7],x=[0,0,0,0,0,0,1]^T,z=0,q=1,p=1 B=[a5,a6,a7],x=[0,0,0,0,0,0,1]T,z=0,q=1,p=1
注:此时,选 p = 1 p=1 p=1 p = 2 p=2 p=2都可以,这里不妨选 p = 1 p=1 p=1

[ 1 − 32 − 4 36 4 0 0 0 0 4 3 2 − 15 − 2 1 0 0 0 0 1 0 0 0 1 1 0 − 4 − 7 2 33 3 0 0 0 ] \begin{bmatrix} 1&-32&-4&36&4&0&0&0\\ 0&4&\frac{3}{2}&-15&-2&1&0&0\\ 0&0&1&0&0&0&1&1\\ 0&-4&-\frac{7}{2}&33&3&0&0&0 \end{bmatrix} 10003240442312736150334203010000100010

B = [ a 1 , a 6 , a 7 ] , x = [ 0 , 0 , 0 , 0 , 0 , 0 , 1 ] T , z = 0 , q = 2 , p = 2 B=[a_1,a_6,a_7],x=[0,0,0,0,0,0,1]^T,z=0,q=2,p=2 B=[a1,a6,a7],x=[0,0,0,0,0,0,1]T,z=0,q=2,p=2

[ 1 0 8 − 84 − 12 8 0 0 0 1 3 8 − 15 4 − 1 2 1 4 0 0 0 0 1 0 0 0 1 1 0 0 − 2 18 1 1 0 0 ] \begin{bmatrix} 1&0&8&-84&-12&8&0&0\\ 0&1&\frac{3}{8}&-\frac{15}{4}&-\frac{1}{2}&\frac{1}{4}&0&0\\ 0&0&1&0&0&0&1&1\\ 0&0&-2&18&1&1&0&0 \end{bmatrix} 1000010088312844150181221018410100100010

B = [ a 1 , a 2 , a 7 ] , x = [ 0 , 0 , 0 , 0 , 0 , 0 , 1 ] T , z = 0 , q = 3 , p = 1 B=[a_1,a_2,a_7],x=[0,0,0,0,0,0,1]^T,z=0,q=3,p=1 B=[a1,a2,a7],x=[0,0,0,0,0,0,1]T,z=0,q=3,p=1

[ 1 8 0 1 − 21 2 − 3 2 1 0 0 − 3 64 1 0 3 16 1 16 − 1 8 0 0 − 1 8 0 0 21 2 3 2 − 1 1 1 1 4 0 0 − 3 − 2 3 0 0 ] \begin{bmatrix} \frac{1}{8}&0&1&-\frac{21}{2}&-\frac{3}{2}&1&0&0\\ -\frac{3}{64}&1&0&\frac{3}{16}&\frac{1}{16}&-\frac{1}{8}&0&0\\ -\frac{1}{8}&0&0&\frac{21}{2}&\frac{3}{2}&-1&1&1\\ \frac{1}{4}&0&0&-3&-2&3&0&0 \end{bmatrix} 816438141010010002211632213231612321811300100010

B = [ a 3 , a 2 , a 7 ] , x = [ 0 , 0 , 0 , 0 , 0 , 0 , 1 ] T , z = 0 , q = 4 , p = 2 B=[a_3,a_2,a_7],x=[0,0,0,0,0,0,1]^T,z=0,q=4,p=2 B=[a3,a2,a7],x=[0,0,0,0,0,0,1]T,z=0,q=4,p=2

[ − 5 2 56 1 0 2 − 6 0 0 − 1 4 16 3 0 1 1 3 − 2 3 0 0 5 2 − 56 0 0 − 2 6 1 1 − 1 2 16 0 0 − 1 1 0 0 ] \begin{bmatrix} -\frac{5}{2}&56&1&0&2&-6&0&0\\ -\frac{1}{4}&\frac{16}{3}&0&1&\frac{1}{3}&-\frac{2}{3}&0&0\\ \frac{5}{2}&-56&0&0&-2&6&1&1\\ -\frac{1}{2}&16&0&0&-1&1&0&0 \end{bmatrix} 2541252156316561610000100231216326100100010

B = [ a 3 , a 4 , a 7 ] , x = [ 0 , 0 , 0 , 0 , 0 , 0 , 1 ] T , z = 0 , q = 5 , p = 1 B=[a_3,a_4,a_7],x=[0,0,0,0,0,0,1]^T,z=0,q=5,p=1 B=[a3,a4,a7],x=[0,0,0,0,0,0,1]T,z=0,q=5,p=1

[ − 5 4 28 1 2 0 1 − 3 0 0 1 6 − 4 − 1 6 1 0 1 3 0 0 0 0 1 0 0 0 1 1 − 7 4 44 1 2 0 0 − 2 0 0 ] \begin{bmatrix} -\frac{5}{4}&28&\frac{1}{2}&0&1&-3&0&0\\ \frac{1}{6}&-4&-\frac{1}{6}&1&0&\frac{1}{3}&0&0\\ 0&0&1&0&0&0&1&1\\ -\frac{7}{4}&44&\frac{1}{2}&0&0&-2&0&0 \end{bmatrix} 45610472840442161121010010003310200100010

B = [ a 5 , a 4 , a 7 ] , x = [ 0 , 0 , 0 , 0 , 0 , 0 , 1 ] T , z = 0 , q = 6 , p = 2 B=[a_5,a_4,a_7],x=[0,0,0,0,0,0,1]^T,z=0,q=6,p=2 B=[a5,a4,a7],x=[0,0,0,0,0,0,1]T,z=0,q=6,p=2

[ 1 4 − 8 − 1 9 1 0 0 0 1 2 − 12 − 1 2 3 0 1 0 0 0 0 1 0 0 0 1 1 − 3 4 20 − 1 2 6 0 0 0 0 ] \begin{bmatrix} \frac{1}{4}&-8&-1&9&1&0&0&0\\ \frac{1}{2}&-12&-\frac{1}{2}&3&0&1&0&0\\ 0&0&1&0&0&0&1&1\\ -\frac{3}{4}&20&-\frac{1}{2}&6&0&0&0&0 \end{bmatrix} 412104381202012112193061000010000100010

B = [ a 5 , a 6 , a 7 ] , x = [ 0 , 0 , 0 , 0 , 0 , 0 , 1 ] T , z = 0 , q = 1 , p = 1 B=[a_5,a_6,a_7],x=[0,0,0,0,0,0,1]^T,z=0,q=1,p=1 B=[a5,a6,a7],x=[0,0,0,0,0,0,1]T,z=0,q=1,p=1
注:此时回到了初始的结果,算法陷入了死循环。这个例子用于解释退化基本解会导致单纯形法陷入死循环的情况。

Bland’s Method

①The entering variable should be the lowest index variable with negative r j r_j rj.

②The leaving variable (in case p p p a tie in the min ratio) should be the lowest index variable.

注:该方法给出了避免产生死循环的方法,即当 p p p q q q有多个选法时,选择下标较小的变量。Bland声称自己有证明,但是找不到了。该方法在实践中证明有效,但是缺乏理论证明。其理论证明是一个数学界的公开问题。

Remarks

n > > m n>>m n>>m,那么用上面的算法计算起来计算量非常大,为了减小计算量,我们要找到一些简便方法。

Claim

Claim: E B − 1 = B n e w − 1 EB^{-1}=B_{new}^{-1} EB1=Bnew1, where B n e w = B [ a p ↔ a q ] B_{new}=B [a_p\leftrightarrow a_q] Bnew=B[apaq]

Revised Simplex

  1. Form the matrix [ B − 1 , y 0 ] ( [ B , I m , b ] → [ I m , B − 1 , y 0 ] ) [B^{-1},y_0]([B,I_m,b]\rightarrow[I_m,B^{-1},y_0]) [B1,y0]([B,Im,b][Im,B1,y0])
  2. Calculate r D T = c D T − λ T D , λ T = c B T B − 1 r_D^T=c_D^T-\lambda^TD, \lambda^T=c_B^TB^{-1} rDT=cDTλTD,λT=cBTB1
  3. If ∀ j ≥ m + 1 : r j ≥ 0 \forall j\geq m+1:r_j\geq 0 jm+1:rj0, then return the current basic solution.
  4. Select q q q with r q < 0 r_q<0 rq<0
  5. Compute y q = B − 1 a q y_q=B^{-1}a_q yq=B1aq
  6. If no y i q > 0 y_{iq}>0 yiq>0, then return “no solution”
    else p = a r g m i n { y i 0 y i q : y i q > 0 } p=argmin\{\frac{y_{i0}}{y_{iq}}:y_{iq}>0\} p=argmin{yiqyi0:yiq>0}
  7. Form [ B − 1 , y 0 , y q ] [B^{-1},y_0,y_q] [B1,y0,yq] and compute E B − 1 , E y 0 EB^{-1},Ey_0 EB1,Ey0
  8. Goto 2
Example

min − 3 x 1 − 5 x 2 -3x_1-5x_2 3x15x2
s.t. x 1 + x 2 + x 3 = 4 x_1+x_2+x_3=4 x1+x2+x3=4
5 x 1 + 3 x 2 − x 4 = 8 5x_1+3x_2-x_4=8 5x1+3x2x4=8
x 1 , x 2 , x 3 , x 4 ≥ 0 x_1,x_2,x_3,x_4\geq 0 x1,x2,x3,x40

Phase I {\rm I} I

min x 5 x_5 x5
s.t. x_1+x_2+x_3=4$
5 x 1 + 3 x 2 − x 4 + x 5 = 8 5x_1+3x_2-x_4+x_5=8 5x1+3x2x4+x5=8
x 1 , ⋯   , x 5 ≥ 0 x_1,\cdots,x_5\geq 0 x1,,x50

[ 1 1 1 0 0 5 3 0 − 1 1 ] \begin{bmatrix} 1&1&1&0&0\\ 5&3&0&-1&1 \end{bmatrix} [1513100101]

B = [ a 3 , a 5 ] , B − 1 = [ 1 0 0 1 ] , c B = [ 0 , 1 ] , [ B − 1 , y 0 ] = [ 1 0 4 0 1 8 ] B=[a_3,a_5],B^{-1}=\begin{bmatrix} 1&0\\ 0&1 \end{bmatrix},c_B=[0,1],[B^{-1},y_0]=\begin{bmatrix} 1&0&4\\ 0&1&8 \end{bmatrix} B=[a3,a5],B1=[1001],cB=[0,1],[B1,y0]=[100148]

Compute r : λ T = c B T B − 1 = [ 0 , 1 ] r:\lambda^T=c_B^TB^{-1}=[0,1] r:λT=cBTB1=[0,1]
r T = c B T − λ T D = [ 0 , 0 , 0 ] − [ 0 , 1 ] [ 1 1 0 5 3 − 1 ] = [ 5 − 3 1 ] r^T=c_B^T-\lambda^TD=[0,0,0]-[0,1]\begin{bmatrix} 1&1&0\\ 5&3&-1 \end{bmatrix}=\begin{bmatrix} 5\\ -3\\ 1 \end{bmatrix} rT=cBTλTD=[0,0,0][0,1][151301]= 531

q = 1 , y 1 = B − 1 a 1 = [ 1 5 ] q=1,y_1=B^{-1}a_1=\begin{bmatrix} 1\\ 5 \end{bmatrix} q=1,y1=B1a1=[15]

y i 0 y i q = 4 \frac{y_{i0}}{y_{iq}}=4 yiqyi0=4 v.s. 8 5 \frac{8}{5} 58
p = 2 p=2 p=2

E = [ 1 − 1 5 0 1 5 ] E=\begin{bmatrix} 1&-\frac{1}{5}\\ 0&\frac{1}{5} \end{bmatrix} E=[105151]

y 0 ′ = E y 0 = [ 12 5 8 5 ] y_0'=Ey_0=\begin{bmatrix} \frac{12}{5}\\ \frac{8}{5} \end{bmatrix} y0=Ey0=[51258]

B n e w − 1 = E B − 1 = [ 1 − 1 5 0 1 5 ] B_{new}^{-1}=EB^{-1}=\begin{bmatrix} 1&-\frac{1}{5}\\ 0&\frac{1}{5} \end{bmatrix} Bnew1=EB1=[105151]

B n e w = [ a 3 , a 1 ] , c B = [ 0 , 0 ] B_{new}=[a_3,a_1],c_B=[0,0] Bnew=[a3,a1],cB=[0,0]

λ n e w T = c B T B n e w − 1 = [ 0 , 0 ] \lambda_{new}^T=c_B^TB_{new}^{-1}=[0,0] λnewT=cBTBnew1=[0,0]

r n e w = c B T − λ n e w T D = [ 0 , 0 , 1 ] − [ 0 , 0 ] [ 1 0 0 3 − 1 1 ] = [ 0 , 0 , 1 ] ⇒ r_{new}=c_B^T-\lambda_{new}^TD=[0,0,1]-[0,0]\begin{bmatrix} 1&0&0\\ 3&-1&1 \end{bmatrix}=[0,0,1]\Rightarrow rnew=cBTλnewTD=[0,0,1][0,0][130101]=[0,0,1] optimal

Phase I I {\rm II} II

B = [ a 3 , a 1 ] , y 0 = [ 12 5 , 8 5 ] , c B = [ 0 , − 3 ] B=[a_3,a_1],y_0=[\frac{12}{5},\frac{8}{5}],c_B=[0,-3] B=[a3,a1],y0=[512,58],cB=[0,3]

B − 1 = [ 1 − 1 5 0 1 5 ] B^{-1}=\begin{bmatrix} 1&-\frac{1}{5}\\ 0&\frac{1}{5} \end{bmatrix} B1=[105151]

[ 1 1 1 0 4 5 3 0 − 1 8 − 3 − 5 0 0 0 ] \begin{bmatrix} 1&1&1&0&4\\ 5&3&0&-1&8\\ -3&-5&0&0&0 \end{bmatrix} 153135100010480

c D = [ − 5 , 0 ] c_D=[-5,0] cD=[5,0]

Compute r : λ T = c B T B − 1 = [ 0 , − 3 ] [ 1 − 1 5 0 1 5 ] = [ 0 , − 3 5 ] r:\lambda^T=c_B^TB^{-1}=[0,-3]\begin{bmatrix} 1&-\frac{1}{5}\\ 0&\frac{1}{5} \end{bmatrix}=[0,-\frac{3}{5}] r:λT=cBTB1=[0,3][105151]=[0,53]
r D T = c D T − λ T D = [ − 5 , 0 ] − [ 0 , − 3 5 ] [ 1 0 3 − 1 ] = [ − 16 5 − 3 5 ] r_D^T=c_D^T-\lambda^TD=[-5,0]-[0,-\frac{3}{5}]\begin{bmatrix} 1&0\\ 3&-1 \end{bmatrix}=\begin{bmatrix} -\frac{16}{5}\\ -\frac{3}{5} \end{bmatrix} rDT=cDTλTD=[5,0][0,53][1301]=[51653]
q = 2 q=2 q=2

y 2 = B − 1 a 2 = [ 1 − 1 5 0 1 5 ] [ 1 3 ] = [ 2 5 3 5 ] y_2=B^{-1}a_2=\begin{bmatrix} 1&-\frac{1}{5}\\ 0&\frac{1}{5} \end{bmatrix}\begin{bmatrix} 1\\ 3 \end{bmatrix}=\begin{bmatrix} \frac{2}{5}\\ \frac{3}{5} \end{bmatrix} y2=B1a2=[105151][13]=[5253]

y i 0 y i q : 12 5 2 5 \frac{y_{i0}}{y_{iq}}:\frac{\frac{12}{5}}{\frac{2}{5}} yiqyi0:52512 v.s. 8 5 3 5 ⇒ p = 2 \frac{\frac{8}{5}}{\frac{3}{5}}\Rightarrow p=2 5358p=2

E = [ 1 − 2 3 0 5 3 ] E=\begin{bmatrix} 1&-\frac{2}{3}\\ 0&\frac{5}{3} \end{bmatrix} E=[103235]

B n e w − 1 = E B − 1 = [ 1 − 1 3 0 1 3 ] , y n e w = E y 0 = [ 4 3 8 3 ] , B n e w = [ a 3 , a 2 ] B_{new}^{-1}=EB^{-1}=\begin{bmatrix} 1&-\frac{1}{3}\\ 0&\frac{1}{3} \end{bmatrix},y_{new}=Ey_0=\begin{bmatrix} \frac{4}{3}\\ \frac{8}{3} \end{bmatrix},B_{new}=[a_3,a_2] Bnew1=EB1=[103131],ynew=Ey0=[3438],Bnew=[a3,a2]

Compute r n e w : r n e w T = [ 16 3 − 5 3 ] ⇒ q = 4 r_{new}:r_{new}^T=\begin{bmatrix} \frac{16}{3}\\ -\frac{5}{3} \end{bmatrix}\Rightarrow q=4 rnew:rnewT=[31635]q=4

y 4 = B n e w − 1 a 4 = [ 1 − 1 3 0 1 3 ] [ 0 1 ] = [ 1 3 − 1 3 ] ⇒ p = 1 y_4=B_{new}^{-1}a_4=\begin{bmatrix} 1&-\frac{1}{3}\\ 0&\frac{1}{3} \end{bmatrix}\begin{bmatrix} 0\\ 1 \end{bmatrix}=\begin{bmatrix} \frac{1}{3}\\ -\frac{1}{3} \end{bmatrix}\Rightarrow p=1 y4=Bnew1a4=[103131][01]=[3131]p=1

B n e w ′ = [ a 4 , a 2 ] B_{new}'=[a_4,a_2] Bnew=[a4,a2]

E = [ 3 0 1 1 ] E=\begin{bmatrix} 3&0\\ 1&1 \end{bmatrix} E=[3101]

B n e w ′ − 1 = E B n e w = [ 3 − 1 1 0 ] , y n e w ′ = E y n e w = [ 4 4 ] {B'_{new}}^{-1}=EB_{new}=\begin{bmatrix} 3&-1\\ 1&0 \end{bmatrix},y_{new}'=Ey_{new}=\begin{bmatrix} 4\\ 4 \end{bmatrix} Bnew1=EBnew=[3110],ynew=Eynew=[44]

Compute r n e w ′ = [ 2 , 5 ] > 0 r_{new}'=[2,5]>0 rnew=[2,5]>0

OPT: [ 0 , 4 , 0 , 4 ] [0,4,0,4] [0,4,0,4]

Duality of LP

Normal Form

Primal LP:
min c T x c^Tx cTx
s.t. A x ≥ b Ax\geq b Axb
x ≥ 0 x\geq 0 x0

Dual LP:
min y T b y^Tb yTb
s.t. y T A ≤ c T y^TA\leq c^T yTAcT
y ≥ 0 y\geq 0 y0
symmatric form of duality(对偶的对称形式)

Claim

Claim: Dual of dual = primal

Standard Form

primal:
min c T x c^Tx cTx
s.t. A x = b Ax=b Ax=b
x ≥ 0 x\geq 0 x0

⇒ \Rightarrow min c T x c^Tx cTx
s.t. A x ≥ b Ax\geq b Axb
− A x ≥ − b -Ax\geq -b Axb
x ≥ 0 x\geq 0 x0

⇒ \Rightarrow min c T x c^Tx cTx
s.t. [ A − A ] x ≥ [ b − b ] \begin{bmatrix} A\\ -A \end{bmatrix}x\geq \begin{bmatrix} b\\ -b \end{bmatrix} [AA]x[bb]
x ≥ 0 x\geq 0 x0

⇒ \Rightarrow max u T b − v T b u^Tb-v^Tb uTbvTb
s.t. [ u v ] T [ A − A ] ≤ c T \begin{bmatrix} u\\ v \end{bmatrix}^T\begin{bmatrix} A\\ -A \end{bmatrix}\leq c^T [uv]T[AA]cT
u , v ≥ 0 u,v\geq 0 u,v0

Define y = u − v y=u-v y=uv
⇒ \Rightarrow max y T b y^Tb yTb
s.t. y T A ≤ c T y^TA\leq c^T yTAcT

Asymmetric form of duality(对偶的不对称形式)

Example

max 2 x 1 + 5 x 2 + x 3 2x_1+5x_2+x_3 2x1+5x2+x3
s.t. 2 x 1 − x 2 + 7 x 3 ≤ 6 2x_1-x_2+7x_3\leq 6 2x1x2+7x36
x 1 + 3 x 2 + 4 x 3 ≤ 9 x_1+3x_2+4x_3\leq 9 x1+3x2+4x39
3 x 1 + 6 x 2 + x 3 ≤ 3 3x_1+6x_2+x_3\leq 3 3x1+6x2+x33

⇒ \Rightarrow min [ 6 , 9 , 3 ] y [6,9,3]y [6,9,3]y
s.t. [ 2 − 1 7 1 3 4 3 6 1 ] y ≥ [ 2 5 1 ] \begin{bmatrix} 2&-1&7\\ 1&3&4\\ 3&6&1 \end{bmatrix}y\geq \begin{bmatrix} 2\\ 5\\ 1 \end{bmatrix} 213136741 y 251
y ≥ 0 y\geq 0 y0

Theorem

Thm(Week LP duality): If x x x is any feasible solution to the primal LP and y y y is any feasible solution to the dual c T x ≥ y T b c^Tx\geq y^Tb cTxyTb.

总结

前几节课讲的单纯形法侧重于对方法的推导,这节课比较侧重于实践。一上来先规范了单纯形法的解法,并给出例子予以说明。然后讨论了退化基本解的问题,给出例子说明按照之前推导的方法不一定收敛,可能产生死循环。于是给出了Bland’s Method,可有效避免死循环的问题,但是该方法的正确性在理论上还没有得到证明。接着,对于 n n n远大于 m m m的情况,为了减少计算量,又介绍了修正单纯形法。至此,单纯形法基本介绍完毕。后面开始介绍关于线性规划的对偶性问题,不加证明地给出了两种形式下的对偶线性规划,并且两种对偶体现为对偶的对称形式和对偶的不对称形式。最后给出了线性规划的弱对偶定理。下节课将进一步介绍对偶线性规划的相关知识。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值