深度学习
文章平均质量分 60
易之阴阳
易之阴阳,量子纠缠,道之一体,缘起性空。问学ICT及AI与人的智慧。
展开
-
人工智能最新技术详解二
工智能领域正在经历快速的发展,以下是一些最新的技术突破和趋势:1.合成数据的兴起:2.多模态人工智能:3.深度学习的进展:4.强化学习的新成就:5.自动化机器学习(AutoML)和元学习:6.可解释性与信任度增强:7.量子机器学习:原创 2024-06-04 14:07:49 · 415 阅读 · 0 评论 -
TorchServe site-packages结构详解
中的结构反映了其作为一个模型服务框架的组成部分,包括核心服务逻辑、模型处理、依赖管理和扩展能力。用户在开发和部署模型服务时,可能会直接或间接地与这些模块交互。TorchServe 在 Python 环境中运行,因此其相关的库和依赖项会安装在 Python 的。下面是对 TorchServe 在。综上所述,TorchServe 在。原创 2024-05-28 17:37:06 · 219 阅读 · 0 评论 -
TorchServe 打包 .mar
文件的目的是将模型、元数据和可能的依赖项整合在一起,以便于在 TorchServe 中部署。这个工具会将模型、元数据(包括模型处理类的定义)和任何依赖项打包到一起。文件已经打包完成,并可以被 TorchServe 加载和使用。请注意,根据实际需求,你可能需要调整。文件(Model Archive)是 TorchServe 用来存储和管理模型的标准格式。文件中的处理逻辑以适应模型的输入和输出格式。原创 2024-05-28 17:37:44 · 363 阅读 · 0 评论 -
TorchServe应用详解
orchServer是PyTorch生态系统中的一个工具,它提供了一种简单的方式来部署和管理PyTorch模型,以便在生产环境中进行高效的模型推理。TorchServer允许用户将训练好的模型封装为服务,通过RESTful API对外提供推理服务。原创 2024-05-28 14:12:07 · 448 阅读 · 0 评论 -
TorchServe详解和应用
TorchServer是PyTorch的一个组件,它是一个轻量级的服务框架,用于部署和管理PyTorch模型,以便在生产环境中提供高效、可扩展的推理服务。TorchServer提供了RESTful API,可以方便地与其他系统集成,支持模型热加载和热更新,确保模型的快速部署和更新。启动TorchServer后,你就可以通过HTTP请求调用模型服务了。使用TorchServer时,你需要创建一个自定义的处理类(如。,并实现预处理、模型推理和后处理方法。原创 2024-05-28 14:08:19 · 997 阅读 · 0 评论 -
数据集IEEE DataPort
IEEE DataPort 是一个由电气和电子工程师学会(IEEE)提供的数据存储和搜索平台,旨在支持科研机构和个人的数据共享和管理需求。该平台提供了一系列功能,帮助研究人员上传、发现和访问数据集,促进了科学研究的可重复性和透明度。IEEE DataPort 作为一个专业的数据共享平台,为科研界提供了一个标准化的环境,促进了数据的开放和有效利用,有助于推动科学进步。原创 2024-05-21 17:47:39 · 1385 阅读 · 0 评论 -
人工智能在社会创新中的作用
人工智能在社会创新中的角色是多维度的,既带来了巨大的机遇,也提出了新的挑战。随着技术的不断演进,AI将继续在社会创新中扮演越来越重要的角色。人工智能在社会创新中的作用广泛而深远,它正在推动各个领域的发展,促进社会的创新变革。原创 2024-05-21 15:34:29 · 282 阅读 · 0 评论 -
机器学习技术搭建
确保在整个过程中,你遵循最佳实践,如数据分离(训练集、验证集、测试集)、代码版本控制(如Git)和文档记录,以便于后续的维护和复用。原创 2024-05-17 15:17:54 · 386 阅读 · 0 评论 -
Cityscapes数据集应用
数据量:包含2,975个训练图像,500个验证图像和500个测试图像。分辨率:图像分辨率通常为2048x1024像素。标注:每个图像都有像素级别的语义分割标注,其中行人和汽车还提供了实例分割信息。类别:30个不同的类别,包括建筑物、人行道、道路、天空等。原创 2024-05-17 07:00:00 · 914 阅读 · 0 评论 -
UCI Machine Learning Repository数据集介绍和应用
UCI Machine Learning Repository(UCI ML Repository)是加州大学欧文分校(University of California, Irvine)信息与计算机科学学院(ICS)维护的一个数据集集合,它是一个广泛使用的资源,用于机器学习和数据挖掘研究。这个库包含了大量的结构化数据集,涵盖了各种不同的领域,如社会科学、生物学、医学、工程学等。UCI ML Repository因其易于访问和丰富的数据集种类,成为了机器学习研究和教学的宝贵资源。原创 2024-05-16 10:26:46 · 1548 阅读 · 0 评论 -
ImageNet数据集介绍和应用
ImageNet是一个大规模的视觉数据库,由斯坦福大学的李飞飞教授领导的团队创建。这个数据库是基于WordNet的词汇结构,其中每个“Synset”(WordNet中的一个单词或短语的同义词集)都对应一组标注过的图像。ImageNet的主要目标是为计算机视觉研究提供一个标准化的测试床,尤其是图像分类和物体识别任务。请注意,由于数据集的大小,处理和训练ImageNet可能需要大量的计算资源和时间。在学术和工业界,许多研究者和公司都会使用云服务来加速这一过程。原创 2024-05-16 10:02:55 · 1069 阅读 · 0 评论 -
开源的机器学习数据集
开源的机器学习数据集对于学习和研究机器学习算法非常重要。请记住,使用任何数据集时都要遵守数据集的使用许可和隐私政策。在实际项目中,确保数据集的质量和适用性至关重要。原创 2024-05-16 09:55:13 · 534 阅读 · 0 评论 -
tensorflow 模型库详细介绍
是一个官方的开源项目,它提供了多种预训练的机器学习模型、研究原型以及相关工具,覆盖了深度学习的多个领域。这个库的目的是为了促进研究和实践之间的交流,让开发者能够快速使用和定制最先进的模型。中的模型,你需要安装TensorFlow库,并根据模型库中的文档和示例代码来导入和使用模型。这些模型通常都有详细的使用说明,包括数据格式要求、模型参数设置等。不过,由于模型库持续更新,建议直接查看GitHub仓库(TensorFlow 模型库(原创 2024-05-15 07:00:00 · 731 阅读 · 0 评论 -
多模态对话系统的人工智能技术特点
多模态对话系统结合了多种感知和表达模态,如文本、语音、图像、视频和手势等,以提供更自然、更丰富的交互体验。这些特点共同构成了多模态对话系统的核心竞争力,使其在人机交互、客户服务、教育、娱乐、医疗健康等多个领域展现出广泛的应用潜力。原创 2024-05-14 16:00:28 · 682 阅读 · 1 评论 -
人工智能技术在行为分析上应用
人工智能技术通过深度学习、自然语言处理、计算机视觉等方法,为行为分析提供了强大的工具,不仅能够处理大规模数据,还能发现细微的行为模式,为教育、医疗、商业、安全等多个领域带来深刻的变革。随着技术的不断进步,AI在行为分析上的应用将会更加广泛和深入。原创 2024-05-14 15:54:25 · 531 阅读 · 0 评论 -
人工智能技术中的多模态融合(Multimodal Fusion)
人工智能技术中的多模态融合(Multimodal Fusion)是指将来自不同感官通道(如视觉、听觉、触觉、味觉和嗅觉)或不同类型的数据(如文本、图像、语音、视频等)结合起来,以提高系统的理解和推理能力。随着技术的进步,多模态融合在人机交互、智能家居、教育、娱乐、安全等领域都有广泛的应用前景,且随着物联网(IoT)和5G等技术的发展,这种融合将会更加无缝和智能化。原创 2024-05-13 14:41:27 · 951 阅读 · 1 评论 -
GitHUb 上较好的AI 开源项目
在GitHub上有许多高质量的人工智能(AI)开源项目,适合不同层次的开发者学习和贡献。这些项目不仅提供了强大的工具和框架,还拥有活跃的社区支持,文档齐全,是学习AI技术和贡献开源社区的绝佳起点。原创 2024-05-13 14:39:48 · 885 阅读 · 0 评论 -
反向传播算法的具体求解示例
为了更好地理解反向传播算法的具体求解过程,让我们通过一个简化的示例来说明。我们将考虑一个非常基础的神经网络结构,它包含一个输入层、一个隐藏层和一个输出层。假设我们的网络只有1个输入节点、1个隐藏节点和1个输出节点,使用Sigmoid激活函数,以及一个简单的均方误差损失函数。原创 2024-05-11 14:06:34 · 597 阅读 · 0 评论 -
反向传播算法的具体求解过程
反向传播算法(Backpropagation)是训练神经网络时常用的一种高效算法,主要用于计算损失函数相对于网络中各权重参数的梯度,从而能够通过梯度下降等优化方法来更新这些参数。原创 2024-05-11 08:00:00 · 548 阅读 · 0 评论 -
Pytorch 在人脸识别中使用三元组损失函数的代码示例
请注意,实际使用时,你需要将这些向量与你的网络模型的输出相匹配,确保它们是从网络的最后几层提取的特征表示。此外,你还需要正确地构建训练数据,确保每个三元组都包含一个锚点、一个正样本(与锚点属于同一类)和一个负样本(与锚点属于不同类)。三元组损失函数旨在最小化正样本对与负样本对之间的距离,同时保持正样本对的距离小于一个阈值。参数设置了一个安全边际,确保正样本对之间的距离总是小于负样本对的距离加上这个边际。分别代表三元组的锚点、正样本和负样本。原创 2024-05-10 14:23:21 · 362 阅读 · 0 评论 -
梯度下降法的示例
梯度下降法是一种用于寻找函数最小值的优化算法,常用于机器学习中模型参数的学习。下面,我将以一个简单的线性回归问题为例,来展示梯度下降法的工作原理。原创 2024-05-11 07:00:00 · 488 阅读 · 0 评论 -
使用三元组损失函数
确保在整个过程中监控损失函数和模型性能,以便适时调整超参数,如学习率、margin值以及采样策略。使用三元组损失函数时,关键在于如何恰当地选取。原创 2024-05-10 14:14:17 · 226 阅读 · 0 评论 -
在人脸识别中应用三元组损失函数
在人脸识别中,三元组损失函数是一种常用的方法来训练模型,使得模型能够学习到将人脸图像映射到一个高维特征空间中,使得相同身份的人脸在这个特征空间中的距离尽可能小,而不同身份的人脸之间的距离尽可能大。通过这种方式,三元组损失函数促使模型学习到具有辨别力的人脸特征表示,从而实现高效的人脸识别。原创 2024-05-10 07:00:00 · 325 阅读 · 0 评论 -
常见的损失函数详解
损失函数(Loss Function)是机器学习和统计建模中的关键概念,它量化了模型预测值与实际观测值之间的差异。损失函数的选择直接影响模型的训练过程和最终性能。这些损失函数各有千秋,选择哪种取决于具体的应用场景、模型类型以及对误差的容忍度。在实践中,还可能结合正则化项(如L1或L2正则化)来避免过拟合,优化模型泛化能力。原创 2024-05-09 10:44:36 · 576 阅读 · 0 评论 -
损失函数详解
选择损失函数时,需要考虑模型的类型(如回归或分类)、数据的特点(如是否含有离群点)、以及优化算法的适用性。每种损失函数都有其优势和局限性,理解它们的工作原理对于设计有效的机器学习模型至关重要。原创 2024-05-09 10:18:40 · 503 阅读 · 0 评论 -
GitHub 上 NVIDIA Research Projects
NVIDIA Research 是 NVIDIA 公司内部致力于推动科技前沿的部门,专注于多个领域的创新研究,旨在通过尖端技术解决未来计算挑战。NVIDIA Research 在 GitHub 上有许多公开的项目和代码库,这些项目涵盖了人工智能、计算机视觉、图形学、自动驾驶等多个领域。原创 2024-05-07 18:05:30 · 352 阅读 · 0 评论 -
机器学习中的数据集的构建方法
明确你的机器学习项目目标是什么,这将决定你需要什么样的数据。比如,分类、回归、聚类或其他任务类型。确定数据集需要覆盖哪些特征和类别,以及数据的预期结构(如表格数据、图像、文本等)。原创 2024-05-09 07:00:00 · 997 阅读 · 0 评论 -
机器学习中的数据集的收集方法
在收集数据时,重要的是要确保数据的质量、合法性及隐私保护,遵循数据伦理原则,必要时还需进行去标识化处理以保护个人信息。同时,数据收集策略应当与项目目标紧密相连,确保收集到的数据对模型训练有价值。原创 2024-05-08 07:30:00 · 897 阅读 · 0 评论 -
机器学习中的数据集的标注方法
在机器学习中,数据集的标注方法是确保模型学习有效性的关键步骤,尤其对于监督学习而言至关重要。原创 2024-05-07 08:05:46 · 1304 阅读 · 0 评论 -
机器学习中的数据集的人工标注工具使用
选择合适的标注工具时,应考虑项目的具体需求、数据类型、预算、团队协作需求以及是否需要高级功能(如自动化辅助标注)。在实际操作中,可能还需要进行一定的定制化工作,以更好地适应特定的机器学习任务。人工标注工具在机器学习中扮演着关键角色,尤其是在监督学习项目中,它们帮助将原始数据转换为机器可以理解的结构化形式。原创 2024-05-07 08:05:28 · 589 阅读 · 0 评论 -
机器学习中的数据集的收集方法和工具
在机器学习中,数据集的收集是一项基础且至关重要的工作,它直接影响到模型训练的质量和最终应用的效果。原创 2024-05-07 06:00:00 · 1119 阅读 · 0 评论 -
人工智能技术中梯度函数详解
对于一个多变量函数(f(x_1, x_2, ..., x_n)),在点((x_1, x_2, ..., x_n))的梯度是一个向量,其各分量是该点处函数关于各个自变量的偏导数。记作: [ \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right) ]梯度下降是一种迭代优化算法,用于寻找某个函数的局部最小值。原创 2024-05-06 10:14:52 · 608 阅读 · 0 评论 -
神经网络及神经网络算法详解
神经网络(Neural Networks)是一种受生物神经系统启发的计算模型,特别适用于模式识别和预测问题。它通过模拟大脑中的神经元网络,利用大量的连接单元(称为神经元)组织成层,通过学习从输入数据中提取特征,并据此做出决策或预测。原创 2024-05-06 10:14:41 · 647 阅读 · 0 评论 -
人工智能技术中激活函数详解
为了解决ReLU函数在负输入区间的“死神经元”问题,Leaky ReLU被提出,其形式为: [ f(x) = \begin{cases} x & \text{if } x \geq 0 \ \alpha x & \text{if } x < 0 \end{cases} ] 其中,(\alpha)是一个小于1的常数(如0.01),确保在负输入时也有非零的梯度。Tanh函数与Sigmoid相似,但其输出范围为(-1, 1),因此相比Sigmoid,它的输出更居中,有助于提高网络训练的效率。原创 2024-05-05 08:59:52 · 495 阅读 · 0 评论 -
人工智能技术中梯度函数相关
此外,对于复杂的函数,如神经网络中的非线性激活函数,其梯度计算也是优化过程中的关键步骤,涉及到链式法则的应用。通过沿着梯度的负方向更新参数,可以逐步减小损失函数的值,从而逼近最优解。梯度方向指向的是函数值增长最快的方向,因此我们沿着梯度的反方向更新参数,以期望达到函数值减小的目的。4.Adaptive Gradient Algorithm (AdaGrad): 自适应地调整学习率,对于出现频率较低的特征给予较大的学习率,对于频繁出现的特征给予较小的学习率,解决了学习率选择的问题。原创 2024-05-05 08:59:09 · 191 阅读 · 0 评论 -
人工智能技术常见激活函数
虽然通常被视为多分类问题的输出层归一化函数,而不是传统意义上的隐藏层激活函数,它将每个神经元的输出转换为概率分布,所有输出之和为1。是ReLU的变体,当输入小于0时,不再是0而是线性地以一个很小的斜率输出,比如0.01x,从而减少“死神经元”问题。近年来提出的新型激活函数,结合了线性和非线性特性,表现出较好的训练性能,尤其在某些特定任务中。类似于Sigmoid,但输出范围为(-1, 1),是零中心化的,有助于训练的收敛速度。存在梯度消失问题,当输入值绝对值较大时,导数接近0,导致深层网络训练困难。原创 2024-05-04 20:51:52 · 359 阅读 · 0 评论 -
构建人工智能神经网络模型参数的过程
在实际应用中,构建神经网络模型参数不仅包括上述静态参数的设定,还包括训练过程中动态更新的梯度、动量等。同时,模型训练完成后,通常会对模型参数进行保存,以便后续使用或进一步的模型部署。此外,为了找到最佳模型性能,还需要对超参数进行调优,这可以通过网格搜索、随机搜索、贝叶斯优化等方法实现。使用特定的初始化策略赋予模型参数初始值。原创 2024-05-04 11:43:54 · 329 阅读 · 0 评论 -
人工智能神经网络的模型参数构建
优化器(Optimizer):选择合适的梯度下降算法或其变体,如 SGD(随机梯度下降)、Adam、RMSprop、Adagrad 等,并可能需要设置其特定参数(如动量、β1、β2、ε等)。- 设计网络层级结构:定义网络的层数、每层的类型(如卷积层、池化层、全连接层、自注意力层等)以及各层的具体参数(如卷积核大小、步长、激活函数、隐藏单元数等)。- 二阶矩估计(仅适用于某些优化器):如 Adam 中的 v_t(一阶矩估计)和 s_t(二阶矩估计),用于自适应地调整学习率。原创 2024-05-04 09:03:07 · 525 阅读 · 0 评论 -
大模型相关术语
模型缩放:通过增加模型的宽度、深度或参数量来提升性能的策略,如Neural Scaling Laws探讨了模型大小与性能之间的关系。- 参数:模型内部可学习的权重和偏置,大模型通常拥有数亿至万亿级别的参数量,这使得它们能够捕获更复杂的语言或数据结构。- 微调:在预训练模型的基础上,使用特定任务的有标签数据进一步训练模型,以优化其在该任务上的性能。- 测试集:独立于训练集的数据,用于评估模型在未见过的数据上的表现,确保模型具有良好的泛化能力。这些术语构成了理解大模型工作原理和应用的基础框架。原创 2024-05-04 08:50:05 · 668 阅读 · 0 评论 -
深度学习相关术语
常用于序列到序列学习任务,如机器翻译,编码器将输入序列编码为中间表示,解码器再将其解码为目标序列。:一种无监督学习方法,通过编码器将输入数据压缩,再通过解码器重构数据,用于特征学习和降维。:使模型能够动态聚焦输入序列的不同部分,增强对关键信息的关注,提高处理效率和理解能力。:由生成器和判别器组成的对弈模型,生成器尝试生成逼真数据,判别器则判断数据的真实性。:模拟人脑神经元结构的计算模型,由输入层、隐藏层和输出层组成,各层间通过权重连接。:具有多个隐藏层的神经网络,能够学习数据的多层次抽象表示。原创 2024-05-03 12:07:11 · 543 阅读 · 0 评论
分享