【企业】零和博弈:选择即博弈,审慎而行

本文探讨了博弈论在企业决策中的应用,从零和博弈的概念出发,阐述了非零和博弈如何促进合作与双赢。通过"囚徒困境"的案例分析,提出在重复博弈中,"一报还一报"的策略能鼓励长期合作。文章强调了在当今社会,企业应避免零和竞争,转向开放合作,共同做大蛋糕,以实现整体繁荣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、选择即博弈

博弈论,又称为对策论,主要研究:

公式化后的激励结构间的相互关系;具有斗争或竞争性质现象的数学理论和方法。

1944年,冯·诺依曼和经济学家奥斯卡·摩根斯特恩合写了具有里程碑意义的奠基之作《博弈论与经济行为》。

将传统的二人博弈推广到 N 人博弈结构,并系统地应用于经济领域。

博弈,作为一种猜测游戏,兰德公司(传奇智库,世界智囊团开创者)的研究人员,列出了四种基本变体:

“草鸡博弈”;“猎鹿博弈”;“僵局”;“囚徒困境”这四个简单的游戏在技术文献中统称为“社会困境”,但又可以被看作是构造复杂共同进化游戏的四块积木。

其中“囚徒困境”,由兰德公司的梅丽尔·弗勒德在 1950 年设计产生。

游戏中,两个分别关押的囚犯必须独立决定坦白还是否认罪行。如果两人都认罪,那么两人都会受到惩罚。如果两人都否认的话,则都会无罪释放。假如只有一人认罪,那么认罪者得到奖励,而另一人受到惩罚。

合作有回报,但如果策略奏效,背叛也有回报。你是其中一人,会怎么办呢?

如果只玩一次,背叛对手是最合理的选择。

但当两个“囚徒”一次又一次地玩,从中互相学习,即“重复的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

产品人卫朋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值