零和博弈思维模式:选择即博弈,无法逃脱的思想牢笼

本文探讨了零和博弈的理论,通过囚徒困境的例子阐述了博弈论中的策略选择。文章指出,通过重复博弈和一报还一报的策略,可以促进合作并达到长期的帕累托最优。同时,提出了正和博弈的概念,强调通过打破封闭系统和制定合理的存量分配规则,实现多方共赢。最后,提倡在企业和个人层面应用博弈论,以共同做大蛋糕,避免零和竞争。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

纸牌屋

人生就是一场零和博弈

输赢高下都在政坛见分晓

不管我们愿不愿意

都是这条路上无奈的过河卒子

只能一路向前

选择即博弈

博弈论,又称为对策论,主要研究:公式化后的激励结构间的相互关系;具有斗争或竞争性质现象的数学理论和方法。

1944年,冯·诺依曼和经济学家奥斯卡·摩根斯特恩合写了具有里程碑意义的奠基之作《博弈论与经济行为》。

将传统的二人博弈推广到 N 人博弈结构,并系统地应用于经济领域。

博弈,作为一种猜测游戏,兰德公司(传奇智库,世界智囊团开创者)的研究人员,列出了四种基本变体:

草鸡博弈、猎鹿博弈、僵局、囚徒困境。

这四个简单的游戏在技术文献中统称为“社会困境”,但又可以被看作是构造复杂共同进化游戏的四块积木。

其中“囚徒困境”,由兰德公司的梅丽尔·弗勒德在 1950 年设计产生。游戏中,两个分别关押的囚犯必须独立决定坦白还是否认罪行。

如果两人都认罪,那么两人都会受到惩罚;如果两人都否认的话,则都会无罪释放。假如只有一人认罪,那么认罪者得到奖励,而另一人受到惩罚。

合作有回报,但如果策略奏效,背叛也有回报。如果你是其中一人࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

产品人卫朋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值