一步一步教你反向传播的例子
背景反向传播(Backpropagation)是训练神经网络最通用的方法之一,网上有许多文章尝试解释反向传播是如何工作的,但是很少有包括真实数字的例子,这篇博文尝试通过离散的数据解释它是怎样工作的。概述对于这个教程,我们将使用2个输入神经元、2个隐含层神经元以及2个输出层神经元组成一个神经网络,另外,隐含层和输出层神经元各包含一个偏差。这是基本结构:目的让神经网络工作,我们对权重、偏差和训练的输入/输出设置一个初始值:反向传播的目的是优化权重,以便于让神经网络学习怎样正确的把任意的输入映





