快速指数取模的实现算法

快速指数取模的实现算法

转自: http://blog.csdn.net/lzyblog/archive/2006/10/26/1351436.aspx

     由于一个整数的指数结果很大,可能远远超出计算机处理范围,故必须简化计算方式.这里采用快速取模方法. 原理为:在4的5次方运算中,5能够化作2*2+1,这是因为5的2进制数为101.所以4的5次方运算便能写作((4)^2*1)^2*4,其中1表示 的是4的0次方,^2表平方.再运用模的性质:(a*b)mod(m)=(amod(m)*bmod(m))mod(m),所以(4^5)mod(m)可 先化为(((4)^2*1)^2*4)mod(m),再化为(((4)^2mod(m)*1)^2mod(m)*4)mod(m).举例子 --(4^5)mod(3)=(((4)^2*1)^2*4)mod(3)=((1*1)^2mod(3)*4)mod(3)= (1*4)mod(3)=1.该函数运行方式取于上述算法思想,首先将幂分解成2进制数,得到一个从幂的最低位数开始01组成的栈:分解b为2进制数.记 录下分解成的位数z,构造栈
 for(;b!=1;b>>=1)
 {
    z++;
    if(b%2==0)

         l[z]=0;
    else

         l[z]=1;


     然后出栈进行"(a^b)mod(c)"的运算.这里用栈的原因是为了使幂的2进制数排列倒过来,实现最高位上的2进制数能够循环它的位数次,最低位上的 2进制数只循环一次.每次的循环得到平方取模的值,一直到结束,取得一个值,即(a^b)mod(c).
for(;z>0;z--)
  {
     if(l[z])

         y=(y*a%c)*(y*a%c)%c;
     else

         y=y*y%c;
  }
if(l[0]) y=(y*a%c);//最后次模
return y;


这是一个比较快的 运算方法.

完整源程序:

// 指数取模:a的b次方modc=x
_int64 mod(_int64 a,_int64 b,_int64 c) // (a)^bmod(c) // 条件1:在rsa中a<c,其它不用a<c.条件2:ac互素
... {
_int64 l[
500 ],z =- 1
,y;
 
for (;b != 1 ;b >>= 1 ) // 分解b为2进制数.记录下分解成的位数z,构 造栈l

  ... {
 z
++
;
 
if (b % 2 == 0 ) l[z] = 0
;
 
else  l[z] = 1
;
 }

// a%=c; // 如果一开始数就很大,先模一次,防止过大,  求逆
y = a * a % c; // 第一次模
  for (;z > 0 ;z -- )
 
...
{
 
if (l[z]) y = (y * a % c) * (y * a % c) %
c;
 
else  y = y * y %
c;
 }

if (l[ 0 ]) y = (y * a % c); // 最后次模
return  y;
}
阅读更多
文章标签: 算法 c
想对作者说点什么? 我来说一句

密码学快速取模指数算法C代码

2010年03月12日 342B 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭