Description
著名的格雷码是指2n个不同n位二进制数(即0~2n-1,不足n位在前补零)的一个排列,这个排列满足相邻的两个二进制数的n位数字中最多只有一个数字不同(例如003和001就有一个数位不同,而003和030有两个数位不同,不符合条件)。例如n=2时,(00,01,11,10)就是一个满足条件的格雷码。 所谓超级格雷码就是指Bn个不同的n位B进制数的排列满足上面的条件。
任务:给出n和B(2≤B≤36, 1≤Bn≤65535),求一个满足条件的格雷码。对于大于9的数位用A~Z表示(10~35)。
Input
只有一行,为两个整数n和B。
Output
一共Bn个行,每行一个B进制数,表示你所求得的符合条件的排列
这道题主要先找到规律,就是如果当时递归的一个B进制数中的数为偶数,那么下一个数为0循环到B-1之间,反之,那么下一个数为B-1循环到0之间。如果明白这个,那代码就很好打了。
#include<cstdio>
#include<cstring>
using namespace std;
int n,b;
int a[2100];
void dfs(int k,int y)
{
if(k==n+1)//如果递归到第n+1位,就输出
{
for(int i=n;i>=1;i--)
{
if(a[i]<10)printf("%d",a[i]);
else printf("%c",a[i]-10+'A');
}
printf("\n");
return ;
}
if(y==0)//为偶数的情况
{
for(int i=0;i<b;i++)
{
a[k]=i;
if(i%2==1)dfs(k+1,1);
else dfs(k+1,0);
}
}
else //为奇数的情况
{
for(int i=b-1;i>=0;i--)
{
a[k]=i;
if(i%2==1)dfs(k+1,0);
else dfs(k+1,1);
}
}
}
int main()
{
scanf("%d%d",&n,&b);
dfs(1,0);//从第一位为偶数(0)开始。
return 0;
}