[bzoj 1662--Usaco2006 Nov]Round Numbers 圆环数

正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺序。她们甚至也不能通过仍硬币的方式。
所以她们通过”round number”竞赛的方式。第一头牛选取一个整数,小于20亿。第二头牛也这样选取一个整数。如果这两个数都是”round numbers”,那么第一头牛获胜,否则第二头牛获胜。
如果一个正整数N的二进制表示中,0的个数大于或等于1的个数,那么N就被称为 “round number” 。例如,整数9,二进制表示是1001,1001 有两个’0’和两个’1’; 因此,9是一个round number。26 的二进制表示是11010 ; 由于它有2个’0’和 3个’1’,所以它不是round number。
很明显,奶牛们会花费很大精力去转换进制,从而确定谁是胜者。 Bessie 想要作弊,而且认为只要她能够知道在一个指定区间范围内的”round numbers”个数。 帮助她写一个程序,能够告诉她在一个闭区间中有多少Hround numbers。区间是 [start,finish],包含这两个数。 (1 <= Start < Finish <= 2,000,000,000)

这道题的题解千奇百怪,那么我来讲一下记忆化搜索版本的数位dp。首先需要把一个数转化为二进制,可用取mod的方法(然而身为蒟蒻的我一下子没想到,用了非常丑的方法),之后呢,定一个三维的dp,f[i][j][k],i表示枚举到第i位(从后往前),j为枚举到现在的0的个数,k则为枚举到现在的1的个数,然后就跟十进制的做法一样,记得要判断前导0,记得dfs要判断return 0的情况,不然会错得很惨。(来自一个蒟蒻的忠告)

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
int a[35],b[35],mi[35];
long long f[35][35][35];
long long dfs(int pos,int n0,int n1,bool lead,bool limt)
{
    if(pos==0)
    {
        if(n0>=n1)return 1;
        return 0;
    }
    if(lead==false && limt==false && f[pos][n0][n1]!=-1)return f[pos][n0][n1];
    int up=1,ans=0;
    if(limt==true)up=a[pos];
    for(int i=0;i<=up;i++)
    {
        int he1=n0,he2=n1;bool bk1=false,bk2=false;
        if(i==0 && lead==false)he1++;
        if(i==1)he2++;
        if(i==0 && lead==true)bk1=true;
        if(limt==true && i==a[pos])bk2=true;
        ans+=dfs(pos-1,he1,he2,bk1,bk2);
    }
    if(lead==false && limt==false)f[pos][n0][n1]=ans;
    return ans;
}
long long solve(int x)
{
    int pos=0,ss=30;
    bool bk=true;
    while(x)
    {
        if(x>=mi[ss])
        {
            b[++pos]=1;
            x-=mi[ss];
            bk=false;
        }
        else
        {
            if(bk==false)b[++pos]=0;
        }
        ss--;
    }    
    ss++;
    while(ss--)b[++pos]=0;
    for(int i=1;i<=pos;i++)a[i]=b[pos-i+1];
    return dfs(pos,0,0,true,true);
}
int main()
{    
    int n,m;
    scanf("%d%d",&n,&m);
    mi[0]=1;
    for(int i=1;i<=30;i++)mi[i]=mi[i-1]*2;
    memset(f,-1,sizeof(f));
    printf("%lld\n",solve(m)-solve(n-1));
    return 0;
}
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页