交叉熵损失函数以及softmax损失函数 交叉熵损失函数以及softmax损失函数周六总结参考资料: https://blog.csdn.net/u014380165/article/details/77284921 https://www.cnblogs.com/aijianiula/p/9460842.html https://wenku.baidu.com/view/81d0aef2900ef12d2af90242a8...
SVM 欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:Markdown和扩展Markdown简洁的语法代码块高亮图片链接和图片上传LaTex数学公式UML序列图和流程图离线写博客导入导出Markdown文件丰富的快捷键快捷键加粗 Ctrl + B 斜体 Ctrl + I 引用 Ctrl
局部特征总结(1)--介绍 1、局部特征(Local Feature)VS全局特征(Global Feature)局部特征: 能够稳定出点并且具有良好可分性的一些点。全局特征: 方差、颜色直方图。 Figure1.1 如图1.1所示,左边一列是完整图像,中间一列是一些边缘的角点(局部特征),右边一列是去除角点的线段。根据边缘的角点可以估测出完整图像。这就是我们讨论的局部特征的
无人驾驶技术之激光雷达市场分析 无人驾驶技术之激光雷达市场分析LiDAR–Light Detection And Ranging,即激光雷达,是利用激光、全球定位系统GPS和惯性测量装置(IMU)三者合一,获得数据并生成精确的数字高层模型(Digital Elevation Model,DEM)。简而言之,就是激光束探测目标的位置、速度等特征量的高精度雷达系统。原用于军事领域,现在已宽展到无人驾驶领域。激光雷达和毫米波雷达的主要区