LeetCode 第 343 题 (Integer Break)

LeetCode 第 343 题 (Integer Break)

Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.

For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 + 3 + 4).

Note: you may assume that n is not less than 2.

作为一道编程题,这道题还是很简单的。简单的观察就能知道拆出足够多的 3 就能使得乘积最大。

int integerBreak(int n)
{
    if(n == 2) return 1;
    if(n == 3) return 2;
    int ret = 1;
    while( n>4 )
    {
        ret *= 3;
        n -= 3;
    }
    return ret * n;
}

这道题的难点其实在于证明为什么拆出足够多的 3 就能使得乘积最大。下面我就试着证明一下。

首先证明拆出的因子大于 4 是不行的。设 x 是一个因子, x>4 ,那么可以将这个因子再拆成两个因子 x2 2 ,易证 (x2)×2>x。所以不能有大于 4 的因子。

4 这个因子也是可有可无的,4=2+2 4=2×2 。因此 4 这个因子可以用两个 2 代替。

除非没有别的因子可用, 1 也不能选作因子。一个数 x 当它大于 3 时,有 (x2)×2>(x1)×1

这样呢,就只剩下 2 3 这两个因子可以选了。下面再证明 3 2 好。

一个数 x=3m+2n ,那么 f=3m×2n=3m×2x3m2 可以对它取个对数。

lnf===mln3+nln2mln3+x3m2ln2x2ln2+(ln332ln2)m

其中 ln332ln2>0 所以 f m 的增函数,也就是说 m 越大越好。所以 3 越多越好。

再多说一句,如果拆出的因子不限于整数的话,可以证明 e=2.718 是最佳的选择。感兴趣的可以试着证明一下。

  • 12
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论 8

打赏作者

liyuanbhu

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值