陶哲轩实分析 6.4 节习题试解

陶哲轩实分析 6.4 节习题试解

6.4.1 设 (an)nm 是收敛到实数 c 的序列。那么 c (an)nm 的极限点。并且是仅有的极限点。

  1. 先证明 c (an)nm 的极限点。

因为 (an)nm 收敛到 c 。所以对于任意的 ε>0 都有 (an)nm 是终极 ε 接近 c 的,所以(an)nm也是终极 ε 附着于 c 的 。所以 c 是极限点。

  1. 再证明 c 是唯一的极限点。

假设 (an)nm 还有另外一个极限点 cc 。设 ε=|cc|/2
由于 (an)nm 收敛到 c 。所以存在一个 N>0,当 n>N 时有 |anc|<ε |anc|=|cc+anc|2εε=ε

这与 c (an)nm 的极限点矛盾。所以 c (an)nm 仅有的极限点。

6.4.2 设 (an)n=m 是一个实数列, c 是实数,并且 m>m 是整数。证明: (1) c (an)n=m 的极限点,当且仅当 c (an)n=m 的极限点。 (2) c (an)n=m 的上极限,当且仅当 c (an)n=m 的上极限。

(1)如果 c (an)n=m 的极限点,那么对于任意的 ε>0 和任意的 N>m ,我们都能找到一个 n>N 满足 |anc|<ε 。 所以对任意的 N>m ,我们都能找到一个 n>N 满足 |anc|<ε 。 所以 c (an)n=m 的极限点。 如果 c (an)n=m 的极限点,那么对于任意的 ε>0 和任意的 N>m ,我们都能找到一个 n>N 满足 |anc|<ε 。那么对于任意 N>m ,我们取 N=max(N,m) ,自然也可以找到一个 n>N 满足 |anc|<ε 。这个 n 也满足 n>N。所以对于任意 N>m ,我们都能找到一个 n>N 满足 |anc|<ε 。所以 c (an)n=m 的极限点。
所以 c (an)n=m 的极限点 和 c (an)n=m 的极限点是等价的。

(2) (an)n=m 的上极限是 L+1=inf(a+N)N=m (an)n=m 的上极限是 L+2=inf(a+N)N=m

a+N=sup(an)n=m 是单调减数列。所以 L+1=L+2

6.4.3 证明引理 6.4.12

(c) inf(an)n=mLL+sup(an)n=m

aN=inf(an)n=N 是单调增数列。
inf(an)n=maNsup(aN)n=m=L

a+N=sup(an)n=N 是单调减数列。
sup(an)n=maNinf(a+N)n=m=L+

a+NaN 所以 L+aN 对任意的 N 成立,所以 L+L
所以: inf(an)n=mLL+sup(an)n=m

(d)如果 c (an)n=m 的极限点,那么 LcL+ .

反证法:如果 c>L+ 那么设 ε=|cL+|/2
那么有极限点的定义可知,对于无论多大的 N>m 都有 n>N 满足 |anc|<ε ,也就是说 an>L++ε
可是由 (a) 可知,存在一个 N>m n>N 时,所有的 an<L++ε
产生矛盾,所以 c<L+
同样方法,可以证明 c>L
所以 LcL+ .

(e)如果 L+ 是有限的,那么它是 (an)n=m 的极限点。

由 (a)(b) 可知:对任意的 ε>0 以及每个 N>m 都存在着一个 n>N 满足 L+anL+ε 。所以 L+ 是极限点。

(f)设 c 是实数,如果 (an)n=m 收敛到 c ,那么必有 L+=L=c。反之也成立。

反证法:假设 cL+ ,那么必有 c<L+ ,设 ε=|L+c|/2
那么存在一个 N>m 对任意的 n>N 都有 an<c+ε
而 (b) 却表明我们可以找到一个 n>N 满足 an>c+ε 产生矛盾,所以 c=L+
同样方法,可以证明 c=L

如果 L+=L=c 那么由 (a) 可知对于任意的 ε>0 都存在一个 N>m 使得对于一切的 n>N 都有 an<L++ε an>Lε 。所以 |anc|<ε 所以 (an)n=m 收敛到 c

6.4.4 证明引理 6.4.13

对一起 n>m 都有 anbn
(a)证明 sup(an)n=msup(bn)n=m
反证法:设 A=sup(an)n=m,B=sup(bn)n=m
假设 A>B ε=|AB|/2
那么存在至少一个 n>m 满足 an>Aε=B+ε
所以 bnan>B+ε
这与 B=sup(bn)n=m 矛盾。所以 sup(an)n=msup(bn)n=m

(b) inf(an)n=minf(bn)n=m
与 (a) 类似的方法可以证明。

(c) limnsup(an)limnsup(bn)

a+N=sup(an)n=N
b+N=sup(bn)n=N
limnsup(an)=inf(a+N)N=m
limnsup(bn)=inf(b+N)N=m

因为 a+Nb+N ,所以有 inf(a+N)N=minf(b+N)N=m
所以 limnsup(aN)N=nlimnsup(bN)N=n

(d) limninf(an)limninf(bn)

因为 inf(an)n=minf(bn)n=m
所以 limninf(aN)N=nlimninf(bN)N=n

6.4.5 证明 6.4.14

(an)n=m (bn)n=m (cn)n=m 是实数列。
anbncn

(an)n=m (cn)n=m 都收敛到 L (bn)n=m 也收敛到 L

L+a=limnsup(an)
L+b=limnsup(bn)
L+c=limnsup(cn)
La=limninf(an)
Lb=limninf(bn)
Lc=limninf(cn)

由上一题结论可知 L+aL+bL+c , LaLbLc

因为 L+a=L+c=L 所以 L+b=L
因为 La=Lc=L 所以 Lb=L

所以 (bn)n=m 也收敛到 L

6.4.6

an=0,bn=1/n
则: sup(an)n=1=sup(bn)n=1

6.4.7 设 (an)n=m 是实数列。那么极限 limnan 存在并等于零当且仅当极限 limn|an| 存在并等于零。

先证 limnan=0 可推出 limn|an|=0
因为 limnan=0 ,对任意的 ε>0 都存在 N n>N 时有 |an|<ε ,所以 limn|an|=0

再证 limn|an|=0 可推出 limnan=0
因为 |an|an|an|
所以 limn|an|=0 可推出 limnan=0

6.4.8

(an)n=m 有上界时,命题 6.4.12 已经证明了 L+ 大于其他的极限点。当 (an)n=m 没有上界时, L+= ,自然也大于其他极限点。

(an)n=m 有下界时,命题 6.4.12 已经证明了 L 小于其他的极限点。当 (an)n=m 没有下界时, L= ,自然也小于其他极限点。

6.4.9

an=(1)nn

6.4.10

对任意的 ε>0 和任意的 N>m 都能找到一个 i>N 满足 |bic|<ε/2
又因为 bi (an)n=m 的极限点。所以 能找到一个 j>N 满足 |ajbi|<ε/2
所以 |ajc|<ε
所以 c (an)n=m 的极限点

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值