Apache Mahout 是 ApacheSoftware Foundation (ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序,并且,在 Mahout 的最近版本中还加入了对Apache Hadoop 的支持,使这些算法可以更高效的运行在云计算环境中。
在Mahout实现的机器学习算法见下表:
算法类 | 算法名 | 中文名 |
分类算法 | Logistic Regression | 逻辑回归 |
Bayesian | 贝叶斯 | |
SVM | 支持向量机 | |
Perceptron | 感知器算法 | |
Neural Network | 神经网络 | |
Random Forests | 随机森林 | |
Restricted Boltzmann Machines | 有限波尔兹曼机 | |
聚类算法 | Canopy Clustering | Canopy聚类 |
K-means Clustering | K均值算法 | |
Fuzzy K-means | 模糊K均值 | |
Expectation Maximization | EM聚类(期望最大化聚类) | |
Mean Shift Clustering | 均值漂移聚类 | |
Hierarchical Clustering | 层次聚类 | |
Dirichlet Process Clustering | 狄里克雷过程聚类 | |
Latent Dirichlet Allocation | LDA聚类 | |
Spectral Clustering | 谱聚类 | |
关联规则挖掘 | Parallel FP Growth Algorithm | 并行FP Growth算法 |
回归 | Locally Weighted Linear Regression | 局部加权线性回归 |
降维/维约简 | Singular Value Decomposition | 奇异值分解 |
Principal Components Analysis | 主成分分析 | |
Independent Component Analysis | 独立成分分析 | |
Gaussian Discriminative Analysis | 高斯判别分析 | |
进化算法 | 并行化了Watchmaker框架 | |
推荐/协同过滤 | Non-distributed recommenders | Taste(UserCF, ItemCF, SlopeOne) |
Distributed Recommenders | ItemCF | |
向量相似度计算 | RowSimilarityJob | 计算列间相似度 |
VectorDistanceJob | 计算向量间距离 | |
非Map-Reduce算法 | Hidden Markov Models | 隐马尔科夫模型 |
集合方法扩展 | Collections | 扩展了java的Collections类 |
Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。
Mahout下个性化推荐引擎Taste介绍
Taste是Apache Mahout提供的一个个性化推荐引擎的高效实现,该引擎基于java实现,可扩展性强,同时在mahout中对一些推荐算法进行了MapReduce编程模式转化,从而可以利用hadoop的分布式架构,提高推荐算法的性能。
在Mahout0.5版本中的Taste,实现了多种推荐算法,其中有最基本的基于用户的和基于内容的推荐算法,也有比较高效的SlopeOne算法,以及处于研究阶段的基于SVD和线性插值的算法,同时Taste还提供了扩展接口,用于定制化开发基于内容或基于模型的个性化推荐算法。
Taste不仅仅适用于Java应用程序,还可以作为内部服务器的一个组件以HTTP和Web Service的形式向外界提供推荐的逻辑。Taste的设计使它能满足企业对推荐引擎在性能、灵活性和可扩展性等方面的要求。
下图展示了构成Taste的核心组件:
从上图可见,Taste由以下几个主要组件组成:
DataModel:DataModel是用户喜好信息的抽象接口,它的具体实现支持从指定类型的数据源抽取用户喜好信息。在Mahout0.5中,Taste提供JDBCDataModel和FileDataModel两种类的实现,分别支持从数据库和文件文件系统中读取用户的喜好信息。对于数据库的读取支持,在Mahout 0.5中只提供了对MySQL和PostgreSQL的支持,如果数据存储在其他数据库,或者是把数据导入到这两个数据库中,或者是自行编程实现相应的类。
UserSimilarit和ItemSimilarity:前者用于定义两个用户间的相似度,后者用于定义两个项目之间的相似度。Mahout支持大部分驻留的相似度或相关度计算方法,针对不同的数据源,需要合理选择相似度计算方法。
UserNeighborhood:在基于用户的推荐方法中,推荐的内容是基于找到与当前用户喜好相似的“邻居用户”的方式产生的,该组件就是用来定义与目标用户相邻的“邻居用户”。所以,该组件只有在基于用户的推荐算法中才会被使用。
Recommender:Recommender是推荐引擎的抽象接口,Taste中的核心组件。利用该组件就可以为指定用户生成项目推荐列表。