题目:我们把只包含因子
2 、 3 和 5 的数称作丑数(Ugly Number) 。例如 6 、 8 都是丑数,但 14 不是,因为它包含因子 7 。习惯上我们把 1 当做是第一个丑数。求按从小到大的顺序的第 1500 个丑数。分析:这是一道在网络上广为流传的面试题,据说google 曾经采用过这道题。
所谓一个数m 是另一个数 n 的因子,是指 n 能被 m 整除,也就是 n % m == 0 。根据丑数的定义,丑数只能被 2 、 3 和 5 整除。也就是说如果一个数如果它能被 2 整除,我们把它连续除以 2 ;如果能被 3 整除,就连续除以 3 ;如果能被 5 整除,就除以连续 5 。如果最后我们得到的是 1 ,那么这个数就是丑数,否则不是。
基于前面的分析,我们可以写出如下的函数来判断一个数是不是丑数:
bool IsUgly(int number)
{
while (number % 2 == 0)
number /= 2;
while (number % 3 == 0)
number /= 3;
while (number % 5 == 0)
number /= 5;
return (number == 1) ? true : false ;
}
接下来,我们只需要按顺序判断每一个整数是不是丑数,即:
int GetUglyNumber_Solution1(int index)
{
if (index <= 0)
return 0;
int number = 0;
int uglyFound = 0;
while (uglyFound < index)
{
++number;
if (IsUgly(number))
{
++uglyFound;
}
}
return number;
}
我们只需要在函数GetUglyNumber_Solution1 中传入参数 1500 ,就能得到第 1500 个丑数。该算法非常直观,代码也非常简洁,但最大的问题我们每个整数都需要计算。即使一个数字不是丑数,我们还是需要对它做求余数和除法操作。因此该算法的时间效率不是很高。
接下来我们换一种思路来分析这个问题,试图只计算丑数,而不在非丑数的整数上花费时间。根据丑数的定义,丑数应该是另一个丑数乘以2 、 3 或者 5 的结果( 1 除外)。因此我们可以创建一个数组,里面的数字是排好序的丑数。里面的每一个丑数是前面的丑数乘以 2 、 3 或者 5 得到的。
这种思路的关键在于怎样确保数组里面的丑数是排好序的。我们假设数组中已经有若干个丑数,排好序后存在数组中。我们把现有的最大丑数记做M 。现在我们来生成下一个丑数,该丑数肯定是前面某一个丑数乘以 2 、 3 或者 5 的结果。我们首先考虑把已有的每个丑数乘以 2 。在乘以 2 的时候,能得到若干个结果小于或等于 M 的。由于我们是按照顺序生成的,小于或者等于 M 肯定已经在数组中了,我们不需再次考虑;我们还会得到若干个大于 M 的结果,但我们只需要第一个大于 M 的结果,因为我们希望丑数是按从小到大顺序生成的,其他更大的结果我们以后再说。我们把得到的第一个乘以 2 后大于 M 的结果,记为 M2 。同样我们把已有的每一个丑数乘以 3 和 5 ,能得到第一个大于 M 的结果 M3 和 M5 。那么下一个丑数应该是 M2 、 M3 和 M5 三个数的最小者。
前面我们分析的时候,提到把已有的每个丑数分别都乘以2 、 3 和 5 ,事实上是不需要的,因为已有的丑数是按顺序存在数组中的。对乘以 2 而言,肯定存在某一个丑数 T2 ,排在它之前的每一个丑数乘以 2 得到的结果都会小于已有最大的丑数,在它之后的每一个丑数乘以 2 得到的结果都会太大。我们只需要记下这个丑数的位置,同时每次生成新的丑数的时候,去更新这个 T2 。对乘以 3 和 5 而言,存在着同样的 T3 和 T5 。
有了这些分析,我们不难写出如下的代码:
int GetUglyNumber_Solution2(int index)
{
if (index <= 0)
return 0;
int *pUglyNumbers = new int [index];
pUglyNumbers[0] = 1;
int nextUglyIndex = 1;
int *pMultiply2 = pUglyNumbers;
int *pMultiply3 = pUglyNumbers;
int *pMultiply5 = pUglyNumbers;
while (nextUglyIndex < index)
{
int min = Min(*pMultiply2 * 2, *pMultiply3 * 3, *pMultiply5 * 5);
pUglyNumbers[nextUglyIndex] = min;
while (*pMultiply2 * 2 <= pUglyNumbers[nextUglyIndex])
++pMultiply2;
while (*pMultiply3 * 3 <= pUglyNumbers[nextUglyIndex])
++pMultiply3;
while (*pMultiply5 * 5 <= pUglyNumbers[nextUglyIndex])
++pMultiply5;
++nextUglyIndex;
}
int ugly = pUglyNumbers[nextUglyIndex - 1];
delete [] pUglyNumbers;
return ugly;
}
int Min(int number1, int number2, int number3)
{
int min = (number1 < number2) ? number1 : number2;
min = (min < number3) ? min : number3;
return min;
}
和第一种思路相比,这种算法不需要在非丑数的整数上做任何计算,因此时间复杂度要低很多。感兴趣的读者可以分别统计两个函数 GetUglyNumber_Solution1(1500) 和 GetUglyNumber_Solution2(1500) 的运行时间。当然我们也要指出,第二种算法由于要保存已经生成的丑数,因此需要一个数组,从而需要额外的内存。第一种算法是没有这样的内存开销的。
http://www.cnblogs.com/mingzi/archive/2009/08/04/1538491.html