卡尔曼滤波学习

原教程地址:KalmanFilter.NET

卡尔曼滤波广泛应用在雷达系统目标跟踪)中,但是其实它还可以应用在任何需要估算和预测的领域

一、一维卡尔曼滤波

通过8个数值例子介绍卡尔曼滤波,涉及平均数、方差、标准差等,最终可以自行设计出一个一维的卡尔曼滤波算法

1.1 背景知识

平均值、期望值、方差、标准差

  对于一个跟踪和控制系统,最大的问题计时在存在不确定性的前提提供一个准确的有用信息
  卡尔曼滤波就是一种常用且重要的估算方法,它在预估时默认输入信息不准确,同时也根据上一次系统的预估值来预估下一次的系统状态,测量噪声和处理噪声的存在可能使得动态模型(描述输入与输出关系的方法)估算出来的结果与真实值相差甚远,因此需要对噪声进行处理。

  平均值和期望值的区别在于,用可观测状态计算出的是均值,一般用 μ \mu μ 表示,而对于无法获得真实值的隐变量,平均多次测量值估计的结果称为期望值,一般用 E E E 表示。

  方差和标准差,方差 Variance 用来衡量一组结果的离散程度,标准差 Standard Deviation 则是方差的算数平方根,两者分别用 σ 2 \sigma^2 σ2 σ \sigma σ 表示。
  方差、标准差在完全样本中的计算和在抽样样本中的计算是有区别的
  在完全样本中:
σ 2 = 1 N ∑ n = 1 N ( x n − μ ) 2 , σ = 1 N ∑ n = 1 N ( x n − μ ) 2 \sigma^2=\frac{1}{N}\sum^{N}_{n=1}(x_n-\mu)^2,\sigma=\sqrt{\frac{1}{N}\sum^{N}_{n=1}(x_n-\mu)^2} σ2=N1n=1N(xnμ)2,σ=N1n=1N(xnμ)2
  在抽样样本中:
σ 2 = 1 N − 1 ∑ n = 1 N ( x n − μ ) 2 , σ = 1 N − 1 ∑ n = 1 N ( x n − μ ) 2 \sigma^2=\frac{1}{N-1}\sum^{N}_{n=1}(x_n-\mu)^2,\sigma=\sqrt{\frac{1}{N-1}\sum^{N}_{n=1}(x_n-\mu)^2} σ2=N11n=1N(xnμ)2,σ=N11n=1N(xnμ)2

正太分布

  很多自然现象都遵循正太分布,也称为高斯分布,可以通过以下等式描述:
f ( x ; μ , σ 2 ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 f(x;\mu,\sigma^2)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}} f(x;μ,σ2)=2πσ2 1e2σ2(xμ)2
  高斯曲线也被称为正太分布的概率密度函数,如下图所示,以及正太分布在 μ ± σ \mu\pm\sigma μ±σ μ ± 2 σ \mu\pm2\sigma μ±2σ μ ± 3 σ \mu\pm3\sigma μ±3σ 的比例,通常,测量误差呈正太分布

  随机变量分为连续随机变量离散随机变量,所有的测量值都是连续随机变量。

估计的准确度与精密度

  估计用来估算系统的不可见状态,可以通过雷达等传感器估计飞机位置,并通过使用多个传感器和高级估计及追踪算法(如卡尔曼滤波)来显著提升估计精度。
  准确度表示测量结果与真实值的接近程度。精密度表示测量结果的再现性。

  随机误差导致方差,高/低精密度系统表示系统方差/不确定性的大小,而高/低精度系统表示系统系统性误差(偏差)的大小。对测量值进行平均或平滑处理可以显著降低方差影响,但是无法修复固定的系统误差,教程中案例都假设为无偏系统

以一张图进行总结

1.2 α − β − γ \alpha-\beta-\gamma

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值