【泛化误差上界(证明详推)】

本文深入浅出地解析了Hoeffding不等式的概念及其应用,通过具体实例展示了如何利用该不等式评估经验风险与期望风险的关系,特别关注于假设空间中函数数量有限的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载 Cyrus

前置知识:

exp() : 以e为底的指数函数,括号内是具体内容

loge : 1.loge =lne =1

2.loge=lge=log(e) = 0.43429448190324 (摘自百度 : )笔者在一个公式上因为这个卡了15分钟)

 

好了,先给出书上定义:

 

接下来,我们要了解一下Hoeffding不等式 (咳咳,上书!!!)

emmmm一开始看到这个不等式我是有点小难受的,特别是转换到下一页的第一条公式。

没事,我们慢慢捋一捋。

然后就是这个

这一整个的意思是想先来求期望风险大于经验风险的概率,为后面期望风险小于经验风险公式做准备。

 

接下来基本就一路顺畅了。。。。。

 

对了,1.29那里我手写推一下,如果有疑问可以看一下hhhhh(字太丑勿喷)

以上讨论的只是假设空间包含有限个函数情况下的泛化误差上界,对一般的假设空间要找到泛化误差界就没有那么简单,这里不作介绍(严肃脸)

 

好了好了,第一章终于结束了~~~(一天下来啥都没干,真是辛苦自己了.jpg)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值