【KD】小白入门知识蒸馏代码实践指南

本文详细介绍了知识蒸馏的不同方法,包括KD、FitNet、AT、SP、CC、VID等,阐述了各种方法的原理、实现方式及其在深度学习模型压缩中的应用,旨在帮助初学者理解并实践知识蒸馏技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. KD: Knowledge Distillation

2. FitNet: Hints for thin deep nets

3. AT: Attention Transfer

4. SP: Similarity-Preserving

5. CC: Correlation Congruence

6. VID: Variational Information Distillation

7. RKD: Relation Knowledge Distillation

8. PKT:Probabilistic Knowledge Transfer

9. AB: Activation Boundaries

10. FT: Factor Transfer

11. FSP: Flow of Solution Procedure

12. NST: Neuron Selectivity Transfer

13. CRD: Contrastive Representation Distillation

14. Overhaul

参考文献


1. KD: Knowledge Distillation

全称:Distilling the Knowledge in a Neural Network

链接:https://arxiv.org/pdf/1503.02531.pdf

发表:NIPS14

最经典的,也是明确提出知识蒸馏概念的工作,通过使用带温度的softmax函数来软化教师网络的逻辑层输出作为学生网络的监督信息,

 

使用KL divergence来衡量学生网络与教师网络的差异,具体流程如下图所示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值