第五节——探索深度优先搜索、广度优先搜索及相关技巧(记忆化和剪枝)

引言

在算法的世界里,深度优先搜索(DFS)和广度优先搜索(BFS)是解决图和树结构问题的两大支柱。今天,我们将深入探讨这两种搜索技术,了解它们如何帮助我们探索未知的领域,并找到解决问题的方法。

深度优先搜索(DFS)

DFS是一种利用栈(显式或递归)来实现的搜索算法,它尽可能深地搜索图的分支。DFS的特点是它总是先探索尽可能深的分支,然后再回溯。这种策略使得DFS成为实现回溯算法的理想选择,后者通过试错来寻找问题的解决方案。

广度优先搜索(BFS)

与DFS不同,BFS使用队列来实现逐层逐层的节点访问。BFS的特点是它总是先访问离根节点最近的节点,这使得BFS在解决最短路径问题或层次结构的遍历中表现出色。

搜索算法的优化

尽管DFS和BFS在许多情况下都非常有用,但在面对大规模数据时,它们可能会遇到效率问题。这时,优化技巧如剪枝和记忆化就显得尤为重要。

  • 剪枝:通过提前终止无效的搜索分支来减少计算量。

  • 记忆化:存储已经计算过的状态以避免重复计算,从而提高效率。

题目分析

1.自然数的拆分问题

该题是一道简单的dfs,截止条件为所有子数相加大于等于原数,输出条件为所有子数相加等于原数并且字典序排序,right判断字典序,dfs组合排列。

#include<iostream>
using namespace std;
bool b[10] = { false };
int arr[10] = { 0 };
int n, len = 0;
bool right() {
    for (int i = 1; i < len; i++) {
        if (arr[i] < arr[i - 1])return false;
    }
    return true;
}
void dfs(int a) {
    if (a > n) {
        return;
    }
    if (a == n) {
        if (right()) {
            for (int i = 0; i < len - 1; i++) {
                cout << arr[i] << '+';
            }
            cout << arr[len - 1] << endl;
        }
        return;
    }
    for (int i = 1; i < n; i++) {
        if (b[len] == true)continue;
        b[len] = true;
        arr[len++] = i;
        dfs(a + i);
        b[--len] = false;
    }
}
int main() {
    cin >> n;
    dfs(0);
    return 0;
}

2.填涂颜色

该题可用bfs搜索,对未被搜索过的区域内的一个0进行bfs,当有一个bfs满足未到达过边境,停止继续新的bfs,以该bfs的标记值判断是否输出2,其余数为0或1。

#include<iostream>
#include<queue>
using namespace std;
int mp[32][32] = { 0 };
int n, b = 2;
struct xy {
    int x, y;
};
struct xy mo[4] = { {0,1},{0,-1},{1,0},{-1,0} };
bool bfs(int x, int y) {
    bool pan = true;
    queue<struct xy>Q;
    Q.push({ x,y });
    mp[x][y] = b;
    struct xy f;
    while (!Q.empty()) {
        f = Q.front();
        Q.pop();
        for (int i = 0; i < 4; i++) {
            int mx = f.x + mo[i].x, my = f.y + mo[i].y;
            if (mx > n || mx<1 || my>n || my < 1) {
                pan = false;
                continue;
            }
            else if (mp[mx][my] == 0 && (mx == n || mx == 1 || my == n || my == 1))pan = false;
            if (mp[mx][my] == 0)Q.push({ mx,my }), mp[mx][my] = b;
        }
    }
    return pan;
}
int main() {
    cin >> n;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            cin >> mp[i][j];
        }
    }
    bool f = false;
    for (int i = 2; i < n; i++) {
        for (int j = 2; j < n; j++) {
            if (mp[i][j] == 0) {
                b++;
                if (f = bfs(i, j))break;
            }
        }
        if (f)break;
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            if (mp[i][j] == b)cout << 2;
            else if (mp[i][j] == 1)cout << 1;
            else cout << 0;
            cout << ' ';
        }
        cout << endl;
    }
    return 0;
}

3.显示图像

该题输入由于没有空格,所以用getcahr();

题目所求每一个0到1的距离;

显然,由每一个0开始搜索一遍会超时,可以转换为从每一个1开始搜索,记录连通的0与它的距离,当有更短距离时更新,当所有1都搜索一遍过后得到最优解。

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
using namespace std;
typedef struct xy {
    int x, y;
}xy;
xy mo[4] = { {0,1},{0,-1},{1,0},{-1,0} };
vector<xy>lig;
int n, m;
int mp[185][185] = { 0 };
int d[185][185] = { 0 };
void bfs(int x, int y) {
    bool b[185][185] = { false };
    queue<struct xy>Q;
    Q.push({ x,y });
    xy f;
    int dist;
    while (!Q.empty()) {
        f = Q.front();
        Q.pop();
        dist = d[f.x][f.y];
        for (int i = 0; i < 4; i++) {
            int mx = f.x + mo[i].x, my = f.y + mo[i].y;
            if (b[mx][my] || mx > n || mx<1 || my>m || my < 1 || d[mx][my] == 1)continue;
            if (d[mx][my] > dist + 1)d[mx][my] = dist + 1;
            else continue;
            b[mx][my] = true;
            Q.push({ mx,my });
        }
    }
}
int main() {
    memset(d, 127, sizeof(d));
    cin >> n >> m;
    char c;
    getchar();
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            c=getchar();
            if(c=='0')mp[i][j] = 0;
            else {
                mp[i][j] = 1;
                d[i][j] = 1;
                lig.push_back({ i,j });
            }
        }
        getchar();
    }
    for (int i = 0; i < lig.size(); i++) {
        bfs(lig[i].x, lig[i].y);
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            cout << d[i][j] - 1 << ' ';
        }
        cout << endl;
    }
    return 0;
}

4.健康的荷斯坦奶牛 Healthy Holsteins

dfs构造组合并且判断是否满足最低维生素数量,更新最低需要的饲料袋子,a、b数组分别记录当前最优的答案和正在累计的答案,最后输出。

#include<iostream>
using namespace std;
int v, g, sum[30] = { 0 }, vi[30], mi = 30, ans = 0, gi[30][30], a[30], b[30];
void dfs(int x)
{
    bool f = false;
    for (int i = 1; i <= v; i++) {
        if (sum[i] < vi[i]) { f = true; break; }
    }
    if (!f) {
        if (ans < mi) {
            mi = ans;
            for (int i = 1; i <= ans; i++)a[i] = b[i];
        }
        return;
    }
    else {
        ans++;
        b[ans] = x;
        for (int i = 1; i <= v; i++)sum[i] = sum[i] + gi[x][i];
        for (int i = 1; i <= g - x + 1; i++)dfs(x + i);
        for (int i = 1; i <= v; i++)sum[i] = sum[i] - gi[x][i];
        ans--;
    }
}
int main()
{
    cin >> v;
    for (int i = 1; i <= v; i++) {
        cin >> vi[i];
    }
    cin >> g;
    for (int j = 1; j <= g; j++) {
        for (int i = 1; i <= v; i++)cin >> gi[j][i];
    }
    dfs(0);
    cout << mi - 1 << " ";
    for (int i = 2; i <= mi; i++) {
        cout << a[i] << " ";
    }
}

5.GRZ-Ridges and Valleys

该题为bfs宽搜,用不同的标记记录不同高低的连通块,随后根据题意判断是峰还是谷。

由于数据较大,取消流同步加快读取。

#include<iostream>
#include<cstdio>
#include<cctype>
using namespace std;
const int N = 1010;
int v[N][N], a[N][N], n, l, r, s1, s2;
int mx[8] = { -1,-1,-1,0,0,1,1,1 };
int my[8] = { -1,0,1,-1,1,-1,0,1 };
struct no { int x, y; }Q[N * N]; 
void bfs(int i, int j) {
    Q[1] = { i,j }; 
    int c1 = 1, c2 = 1; 
    for (l = r = 1; l <= r; ++l)
        for (int k = 0; k < 8; ++k) {
            int nxi = Q[l].x + mx[k], nxj = Q[l].y + my[k];
            if (nxi<1 || nxi>n || nxj<1 || nxj>n) continue;
            if (a[nxi][nxj] == a[i][j]) 
                if (!v[nxi][nxj]) { 
                    Q[++r] = { nxi,nxj };
                    v[nxi][nxj] = 1;
                }
            if (a[nxi][nxj] < a[i][j]) c2 = 0; 
            if (a[nxi][nxj] > a[i][j]) c1 = 0; 
        }
    s1 += c1; s2 += c2;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    cin >> n;
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) cin >> a[i][j];
    }
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j)if (!v[i][j]) bfs(i, j);
    }
    cout << s1 << ' ' << s2 << '\n';
    return 0;
}
 

6.八皇后 Checker Challenge

该题的难点在于如何判断棋子是否在对角线上。

观察可知,对于正对角线,行号减列号的值相等,对于反对角线,行号和列号的和相等,由此可以判断是否可以构成正解。

AC代码如下:

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int n, a[100] = { 0 }, b[100] = { 0 }, arr[100];
vector<int>v;
vector<vector<int> >ans;
void dfs(int i) {
    if (i > n) {
        ans.push_back(v);
        return;
    }
    for (int j = 1; j <= n; j++) {
        if (arr[j] == 0 && a[i + j] == 0 && b[i - j + 50] == 0) {
            arr[j]=1;
            a[i + j]=1;
            b[i - j + 50] = 1;
            v.push_back(j);
            dfs(i + 1);
            v.pop_back();
            arr[j] = 0;
            a[i + j] = 0;
            b[i - j + 50] = 0;
        }
    }
}
int main() {
    cin >> n;
    dfs(1);
    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < ans[i].size(); j++) {
            cout << ans[i][j] << ' ';
        }
        cout << endl;
    }
    cout << ans.size();
    return 0;
}

结语

DFS和BFS是探索图和树结构的有力工具,而优化技巧如剪枝和记忆化则使这些算法更加高效。通过理解这些概念,我们可以更好地设计和实现算法,解决实际问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值