树的层次遍历

#include<iostream>
#include<queue>
using namespace std;
//结点权值作为结点编号
int postOrder[31];     //后序遍历结点
int inOrder[31];       //中序遍历结点
int leftNodes[31];              //保存某结点的左子树编号
int rightNodes[31];           //保存某结点的右子树编号

//根据inOrder[L1]到inOrder[R1]  和postOrder[L1]到postOrder[R1]的结点编号 来构建树
//返回根节点
int buildTree(int L1, int R1, int L2, int R2){
    if (R1 < L1)  //空树
        return -1;
    int root = postOrder[R2];      //后序遍历序列最后一个结点一定是根结点
    int p =0;
    while (inOrder[p] != root)    //找到中序遍历序列中对应哪个根结点的结点
        p++;
    int count = p - L1;          //左子树结点总数

    //p是中序序列的根,从L1到p-1为左子树,对应的后续序列的从L2到L2+count-1
    leftNodes[root] = buildTree(L1, p- 1, L2, L2 + count - 1);   
    //中序序列从p+1到R1为右子树,对应的后续序列从L2+count到R2 - 1 !!因为根节点已经去掉了!!
    rightNodes[root] = buildTree(p + 1, R1, L2+count, R2-1);
    return root;
}

//层序遍历
//传了个N进去是因为输出格式控制 = = 
void printVex(int root,int N){ 
    queue<int> q;
    q.push(root);
    while (q.size()){
        int vex = q.front();
        if (N==1)
            cout << vex;
        else
            cout << vex<<" ";
        q.pop();
        if (leftNodes[vex] != -1)
            q.push(leftNodes[vex]);
        if (rightNodes[vex] != -1)
            q.push(rightNodes[vex]);
        N--;
    }
}
int main(){
    int N;
    cin >> N;
    int index = 0;
    for (int i = 1; i <= N; i++){
        int vex;
        cin >> vex;
        postOrder[index++] = vex;
    }
    index = 0;
    for (int j = 1; j <= N; j++){
        int vex;
        cin >> vex;
        inOrder[index++] = vex;
    }
    int root = buildTree(0, N - 1, 0, N - 1);
    printVex(root,N);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值