ljp1919的专栏

家里的茶庄生存难,且在这里讨生活。

神经网络参数初始化问题代码测试

背景:

神经网络的参数初始化,一般是采用随机初始化的方式。如果是初始化为全0,会导致每层的多个神经元退化为一个,即在每层中的多个神经元是完全失效的。虽然层与层之间仍然是有效的,但是每层一个神经元的多层神经网络,你真的觉得有意思?有什么想法,欢迎留言。

代码测试:

2层神经网络的全0初始化

# -*- coding: utf-8 -*-
__author__ = 'jasonliu'
#探究神经网络初始化值的影响
#初始化为0
#初始化为相同值,但是不为0

import numpy as np

def nonlin(x,deriv=False):
    if(deriv==True):
        return x*(1-x)

    return 1/(1+np.exp(-x))

X = np.array([[0.5,0.9,1],
            [2,1,1],
            [0.3,0.6,1],
            [1.5,0.9,0.6]])

#此时X是在行方式叠其样本数

Y = np.array([[1],
            [3],
            [2],
            [0]])

#此时Y是在行方向叠其样本数
np.random.seed(1)

# randomly initialize our weights with mean 0
# syn0 = 2*np.random.random((3,4)) - 1
# syn1 = 2*np.random.random((4,1)) - 1
W1 = 2*np.zeros((3,4))# + 1
W2 = 2*np.zeros((4,1))# + 1

for j in range(60000):

    # Feed forward through layers 0, 1, and 2
    A0 = X
    Z1 = np.dot(A0, W1)
    A1 = nonlin(Z1)
    Z2 = np.dot(A1, W2)
    A2 = nonlin(Z2)

    # how much did we miss the target value?
    dZ_2 = Y - A2#Loss

    if (j% 10000) == 0:
        print("Error:" + str(np.mean(np.abs(dZ_2))))

    # in what direction is the target value?
    # were we really sure? if so, don't change too much.
    l2_delta = dZ_2*nonlin(A2, deriv=True)#dZ_1

    # how much did each l1 value contribute to the l2 error (according to the weights)?
    l1_error = l2_delta.dot(W2.T)

    # in what direction is the target l1?
    # were we really sure? if so, don't change too much.
    l1_delta = l1_error * nonlin(A1, deriv=True)

    W2 += A1.T.dot(l2_delta)
    W1 += A0.T.dot(l1_delta)

print("Output After Training:")
print("W1=", W1)
print("W2=", W2)
#从结果可以看出,W1在列方向是重复的。
#注意行和列方向的维度信息,也注意样本是在行方向的排列还是列方向

输出结果:

Error:1.25
Error:1.0000091298568936
Error:1.0000044798865095
Error:1.000002957418707
Error:1.0000022037278755
Error:1.0000017545861548
Output After Training:
W1= [[0.58078498 0.58078498 0.58078498 0.58078498]
 [0.72845083 0.72845083 0.72845083 0.72845083]
 [1.33742659 1.33742659 1.33742659 1.33742659]]
W2= [[3.52357914]
 [3.52357914]
 [3.52357914]
 [3.52357914]]

可以看出,出现了重复,W1在列方向是重复的,即该层的每个神经元的权重是相同的。

2层神经网络的全2初始化

输出结果如下:

Error:1.0001879134151608
Error:1.0000064142342748
Error:1.0000032676762678
Error:1.0000021930282932
Error:1.0000016505669969
Error:1.0000013233782656
Output After Training:
W1= [[2.0085157  2.0085157  2.0085157  2.0085157 ]
 [2.02205683 2.02205683 2.02205683 2.02205683]
 [2.03953857 2.03953857 2.03953857 2.03953857]]
W2= [[3.30069379]
 [3.30069379]
 [3.30069379]
 [3.30069379]]

结果是类似的,在列方向的神经元都是一样的。这种对称性依然存在。

随机初始化

W1 = 2*np.random.random((3,4)) - 1
W2 = 2*np.random.random((4,1)) - 1

输出结果:

W1= [[ 0.08581783  1.08039398 -1.16536044  0.27396062]
 [-0.48584844  0.29602972 -0.86136823  0.54469744]
 [ 0.24509319  2.23500284 -0.5412316   2.23673393]]
W2= [[1.23731123]
 [6.40888963]
 [0.09966753]
 [5.78541642]]
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ljp1919/article/details/79948742
个人分类: 深度学习
上一篇nginx中location的正则配置
下一篇我的转岗经验分享
想对作者说点什么? 我来说一句

小波神经网络参数初始化函数

2012年11月06日 1KB 下载

没有更多推荐了,返回首页

关闭
关闭