题目描述
小A站在一个巨大的棋盘上。这个棋盘可以看成是一个网格图。这个网格图的大小为n*m。左上角坐标为(1,1),右下角坐标为(n,m)。这个棋盘很特别,他每行每列都是一个环。具体来说,当小A站在第一行,他往上走的时候,他会走到第n行,站在第n行往下走会走到第一行。对于第一列和第m列类似。小A在棋盘上可以上下左右走,假设他站在位置(i,j),向上走,会走到(i-1,j),向下回到(i+1,j),向左到(i,j-1),向右到(i,j+1)。注意由于棋盘是循环的,他不会走出这个棋盘。
现在小A有一个固定的行走序列S,代表他每一步走的方向,U代表向上,D代表向下,L代表向左,R代表向右。比如小A一开始在(1,1),棋盘大小为3*4。行走序列为UULRD。那么他会依次经过(3,1),(2,1),(2,4),(2,1),(3,1)。但小A觉得只走一遍S太无聊,因此他会重复走这个序列T次。比如上面的例子,当T=2时,真正的行走序列为UULRDUULRD。
小A有q个备选的起点位置。他一开始先给定你棋盘大小与行走序列,对于每个起点位置,他想知道,他沿着序列走,最终会走到哪个位置停下。
输入描述:
第一行三个整数n,m,T。 接下来一行一个字符串S,代表行走序列。注意行走序列在真实走的时候要重复T次。 接下来一个整数q。 接下来q行,每行两个整数x,y,代表小A的一个备选起点。
输出描述:
输出q行,每行两个整数,输出对于这个起点,最后的终点是哪里。
输入
3 6 4 DUUUDLLLLR 3 3 2 2 5 1 4
输出
2 2 1 5 3 4
备注:
20%: |S| * T <= 10^6, q = 1 40%: |S| * T <= 10^6, q <= 10^5 60%: |S|, T <= 10^5, q <= 10^5 100%: 1 <= T,n,m <= 10^9, 1 <= x <= n, 1 <= y <= m. 1<= q, |S| <= 10^5 其中|S|代表S的长度。
思路:
把它往哪走几步统计出来,注意它相当于一个环,用模拟就可以搞定了。
#include<iostream>
using namespace std;
int n,m,T,q,a,b;
long long x,y;//注意开long long
string s;
#define cuvee return
#define miao_ 0
int main()
{
cin>>n>>m>>T;
cin>>s;
for(int i=0;i<n;i++)
{
if(s[i]=='U') x--;
if(s[i]=='D') x++;
if(s[i]=='L') y--;
if(s[i]=='R') y++;//统计
}
cin>>q;
x*=1LL*T;
y*=1LL*T;//long long
for(int i=1;i<=q;i++)
{
cin>>a>>b;
a=a-1;b=b-1;//先减一(一位AK大佬的思路,所以就归在转载里面啦)
a=((1LL*a+x)%n+n)%n+1;
b=((1LL*b+y)%m+m)%m+1;//计算移动
cout<<a<<" "<<b<<endl;//考的时候没打回车qwq
}
cuvee miao_;
}