向量和矩阵范数

  1. 向量范数
    X = ( x 1 , x 2 , … , x n ) T X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} X=(x1,x2,,xn)T

    • 一阶范数
      ∥ X ∥ 1 = ∑ i = 1 n ∣ x i ∣ = ∣ x 1 ∣ + ∣ x 2 ∣ + … + ∣ x n ∣ \|X\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right| X1=i=1nxi=x1+x2++xn

    • 二阶范数
      ∥ X ∥ 2 = ∑ i = 1 n x i 2 = x 1 2 + x 2 2 + … + x n 2 \|X\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}} X2=i=1nxi2 =x12+x22++xn2

    • 无穷阶范数
      ∥ X ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \|X\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| X=1inmaxxi

    • p p p阶范数
      ∥ X ∥ p = ∑ i = 1 n ∣ x i ∣ p p \|X\|_{p}=\sqrt[p]{\sum_{i=1}^{n}\left|x_{i}\right|^{p}} Xp=pi=1nxip


  2. 矩阵范数

    • 列范数,列元素绝对值之和最大者
      ∥ A ∥ 1 = max ⁡ X ∈ R n ∥ A X ∥ 1 ∥ X ∥ 1 = max ⁡ 1 ≤ j ≤ n ∑ i = 1 n ∣ a i j ∣ \|A\|_{1}=\max _{X \in R^{n}} \frac{\|A X\|_{1}}{\|X\|_{1}}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| A1=XRnmaxX1AX1=1jnmaxi=1naij

    • 特征值最大者
      ∥ A ∥ 2 = max ⁡ X ∈ R n ∥ X ∥ ≠ 0 ∥ A X ∥ 2 ∥ X ∥ 2 = λ max ⁡ ( A T A ) \|A\|_{2}=\max _{X \in R^{n} \atop\|X\| \neq 0} \frac{\|A X\|_{2}}{\|X\|_{2}}=\sqrt{\lambda_{\max }\left(A^{T} A\right)} A2=X̸=0XRnmaxX2AX2=λmax(ATA)

    • 行范数,行元素绝对值之和最大者
      ∥ A ∥ ∞ = max ⁡ X ∈ R n ∥ X ∥ ≠ 0 ∥ A X ∥ ∞ ∥ X ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∑ j = 1 n ∣ a i j \|A\|_{\infty}=\max _{X \in R^{n} \atop\|X\| \neq 0} \frac{\|A X\|_{\infty}}{\|X\|_{\infty}}=\max _{1 \leq i \leq n} \sum_{j=1}^{n} | a_{i j} A=X̸=0XRnmaxXAX=1inmaxj=1naij
      例如:
      A = ( 1 − 2 − 3 4 ) A=\left( \begin{array}{cc}{1} & {-2} \\ {-3} & {4}\end{array}\right) A=(1324)
      ∥ A ∥ 1 = 6 , ∥ A ∥ ∞ = 7 \|\mathbf{A}\|_{1}=6, \quad\|A\|_{\infty}=7 A1=6,A=7
      ∥ A ∥ 2 = λ = 15 + 221 ≈ 5.46 \|A\|_{2}=\sqrt{\lambda}=\sqrt{15+\sqrt{221}} \approx 5.46 A2=λ =15+221 5.46
      A ′ A = ( 10 − 14 − 14 20 ) ∣ λ E − A ′ A ∣ = 0 λ 2 − 30 λ + 4 = 0 A^{\prime} A=\left( \begin{array}{cc}{10} & {-14} \\ {-14} & {20}\end{array}\right) \quad \begin{array}{c}{\left|\lambda \mathbf{E}-\mathbf{A}^{\prime} \mathbf{A}\right|=0} \\ {\lambda^{2}-30 \lambda+4=0}\end{array} AA=(10141420)λEAA=0λ230λ+4=0
      Frobenius范数:
      ∥ A ∥ F = ∑ j = 1 n ∑ i = 1 n a i j 2 ∥ A ∥ F = 30 ≈ 5.477 \|A\|_{F}=\sqrt{\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j}^{2}}\qquad \|A\|_{F}=\sqrt{30} \approx 5.477 AF=j=1ni=1naij2 AF=30 5.477

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值