变分法推导含弹性地基的欧拉梁屈曲控制方程

一、问题描述

考虑一长度为 L L L的欧拉梁,受到轴向压力 P P P作用,并放置在弹性地基上。弹性地基的刚度为 k k k单位:N/m²),需要特别注意单位。本人水平有限,欢迎大家一起交流学习。


二、总势能组成

系统的总势能 Π \Pi Π由三部分组成:

  1. 梁的弯曲应变能
    U bend = 1 2 ∫ 0 L E I ( w ′ ′ ) 2 d x U_{\text{bend}} = \frac{1}{2} \int_{0}^{L} EI \left( w'' \right)^2 dx Ubend=210LEI(w′′)2dx

  2. 弹性地基的变形能
    U foundation = 1 2 ∫ 0 L k w 2 d x U_{\text{foundation}} = \frac{1}{2} \int_{0}^{L} k w^2 dx Ufoundation=210Lkw2dx

  3. 外力做功(轴向压力 P P P引起的势能)
    V = − P 2 ∫ 0 L ( w ′ ) 2 d x V = -\frac{P}{2} \int_{0}^{L} \left( w' \right)^2 dx V=2P0L(w)2dx

总势能表达式:
Π = U bend + U foundation + V \Pi = U_{\text{bend}} + U_{\text{foundation}} + V Π=Ubend+Ufoundation+V


三、变分过程

对总势能取一阶变分 δ Π = 0 \delta \Pi = 0 δΠ=0,寻求平衡状态。

1. 弯曲应变能的变分

δ U bend = ∫ 0 L E I w ′ ′ δ w ′ ′ d x \delta U_{\text{bend}} = \int_{0}^{L} EI w'' \delta w'' dx δUbend=0LEIw′′δw′′dx
分部积分两次(利用边界条件:假设梁端部简支或自由,边界项消失):
δ U bend = ∫ 0 L E I w ′ ′ ′ ′ δ w d x \delta U_{\text{bend}} = \int_{0}^{L} EI w'''' \delta w dx δUbend=0LEIw′′′′δwdx

2. 弹性地基变形能的变分

δ U foundation = ∫ 0 L k w δ w d x \delta U_{\text{foundation}} = \int_{0}^{L} k w \delta w dx δUfoundation=0Lkwδwdx

3. 外力势能的变分

δ V = − P ∫ 0 L w ′ δ w ′ d x \delta V = -P \int_{0}^{L} w' \delta w' dx δV=P0Lwδwdx
分部积分一次(边界项消失):
δ V = P ∫ 0 L w ′ ′ δ w d x \delta V = P \int_{0}^{L} w'' \delta w dx δV=P0Lw′′δwdx


四、控制方程

将各部分变分代入 δ Π = 0 \delta \Pi = 0 δΠ=0
∫ 0 L [ E I w ′ ′ ′ ′ + P w ′ ′ + k w ] δ w d x = 0 \int_{0}^{L} \left[ EI w'''' + P w'' + k w \right] \delta w dx = 0 0L[EIw′′′′+Pw′′+kw]δwdx=0

由于 δ w \delta w δw任意性,被积函数必须为零:
E I d 4 w d x 4 + P d 2 w d x 2 + k w = 0 EI \frac{d^4 w}{dx^4} + P \frac{d^2 w}{dx^2} + k w = 0 EIdx4d4w+Pdx2d2w+kw=0


五 、结论

含弹性地基的欧拉梁屈曲控制方程为:
E I w ′ ′ ′ ′ + P w ′ ′ + k w = 0 \boxed{ EI w'''' + P w'' + k w = 0 } EIw′′′′+Pw′′+kw=0

物理意义

  • 第一项:梁的弯曲刚度抵抗变形
  • 第二项:轴向压力引起的几何刚度
  • 第三项:弹性地基提供的横向支撑

k = 0 k=0 k=0时,方程退化为经典欧拉梁屈曲方程;弹性地基的存在增加了系统的抗屈曲能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值