变分法推导含弹性地基的欧拉梁屈曲控制方程
一、问题描述
考虑一长度为 L L L的欧拉梁,受到轴向压力 P P P作用,并放置在弹性地基上。弹性地基的刚度为 k k k(单位:N/m²),需要特别注意单位。本人水平有限,欢迎大家一起交流学习。
二、总势能组成
系统的总势能 Π \Pi Π由三部分组成:
-
梁的弯曲应变能
U bend = 1 2 ∫ 0 L E I ( w ′ ′ ) 2 d x U_{\text{bend}} = \frac{1}{2} \int_{0}^{L} EI \left( w'' \right)^2 dx Ubend=21∫0LEI(w′′)2dx -
弹性地基的变形能
U foundation = 1 2 ∫ 0 L k w 2 d x U_{\text{foundation}} = \frac{1}{2} \int_{0}^{L} k w^2 dx Ufoundation=21∫0Lkw2dx -
外力做功(轴向压力 P P P引起的势能)
V = − P 2 ∫ 0 L ( w ′ ) 2 d x V = -\frac{P}{2} \int_{0}^{L} \left( w' \right)^2 dx V=−2P∫0L(w′)2dx
总势能表达式:
Π
=
U
bend
+
U
foundation
+
V
\Pi = U_{\text{bend}} + U_{\text{foundation}} + V
Π=Ubend+Ufoundation+V
三、变分过程
对总势能取一阶变分 δ Π = 0 \delta \Pi = 0 δΠ=0,寻求平衡状态。
1. 弯曲应变能的变分
δ
U
bend
=
∫
0
L
E
I
w
′
′
δ
w
′
′
d
x
\delta U_{\text{bend}} = \int_{0}^{L} EI w'' \delta w'' dx
δUbend=∫0LEIw′′δw′′dx
分部积分两次(利用边界条件:假设梁端部简支或自由,边界项消失):
δ
U
bend
=
∫
0
L
E
I
w
′
′
′
′
δ
w
d
x
\delta U_{\text{bend}} = \int_{0}^{L} EI w'''' \delta w dx
δUbend=∫0LEIw′′′′δwdx
2. 弹性地基变形能的变分
δ U foundation = ∫ 0 L k w δ w d x \delta U_{\text{foundation}} = \int_{0}^{L} k w \delta w dx δUfoundation=∫0Lkwδwdx
3. 外力势能的变分
δ
V
=
−
P
∫
0
L
w
′
δ
w
′
d
x
\delta V = -P \int_{0}^{L} w' \delta w' dx
δV=−P∫0Lw′δw′dx
分部积分一次(边界项消失):
δ
V
=
P
∫
0
L
w
′
′
δ
w
d
x
\delta V = P \int_{0}^{L} w'' \delta w dx
δV=P∫0Lw′′δwdx
四、控制方程
将各部分变分代入
δ
Π
=
0
\delta \Pi = 0
δΠ=0:
∫
0
L
[
E
I
w
′
′
′
′
+
P
w
′
′
+
k
w
]
δ
w
d
x
=
0
\int_{0}^{L} \left[ EI w'''' + P w'' + k w \right] \delta w dx = 0
∫0L[EIw′′′′+Pw′′+kw]δwdx=0
由于
δ
w
\delta w
δw任意性,被积函数必须为零:
E
I
d
4
w
d
x
4
+
P
d
2
w
d
x
2
+
k
w
=
0
EI \frac{d^4 w}{dx^4} + P \frac{d^2 w}{dx^2} + k w = 0
EIdx4d4w+Pdx2d2w+kw=0
五 、结论
含弹性地基的欧拉梁屈曲控制方程为:
E
I
w
′
′
′
′
+
P
w
′
′
+
k
w
=
0
\boxed{ EI w'''' + P w'' + k w = 0 }
EIw′′′′+Pw′′+kw=0
物理意义:
- 第一项:梁的弯曲刚度抵抗变形
- 第二项:轴向压力引起的几何刚度
- 第三项:弹性地基提供的横向支撑
当 k = 0 k=0 k=0时,方程退化为经典欧拉梁屈曲方程;弹性地基的存在增加了系统的抗屈曲能力。