二叉树创建及遍历算法(递归及非递归)[整理]

//二叉树处理头文件
//
包括二叉树的结构定义,二叉树的创建,遍历算法(递归及非递归),
/*
 
作者:成晓旭

 
时间:2001107(18:49:38-20:00:00)
 
内容:完成二叉树创建,二叉树的前,,后序遍历(递归
)
 
时间:2001107
(21:09:38-22:09:00)
 
内容:完成二叉树的前,中序遍历(非递归
)
 
时间:2001108
(10:09:38-11:29:00)
 
内容:完成查找二叉树的静,动态查找(非递归
)
*/
#include "stdlib.h"

#define MAXNODE 20
#define ISIZE 8
#define NSIZE0 7
#define NSIZE1 8
#define NSIZE2 15
//SHOWCHAR = 1(
显示字符) SHOWCHAR = 0(显示数字
)
#define SHOWCHAR 1
//
二叉树结构体

struct BTNode
{
 int data;
 BTNode *rchild;
 BTNode *lchild;
};
//
非递归二叉树遍堆栈
struct ABTStack
{
 BTNode *ptree;
 ABTStack *link;
};
char TreeNodeS[NSIZE0] = {'A','B','C','D','E','F','G'};
char PreNode[NSIZE0] = {'A','B','D','E','C','F','G'};
char MidNode[NSIZE0] = {'D','B','E','A','C','G','F'};
int TreeNodeN0[NSIZE1][2] = {{0,0},{1,1},{2,2},{3,3},{4,4},{5,5},{6,6},{7,7}};
int TreeNodeN1[NSIZE1][2] = {{0,0},{4,1},{2,2},{6,3},{1,4},{3,5},{5,6},{7,7}};
int TreeNode0[NSIZE1][2] = {{'0',0},{'D',1},{'B',2},{'F',3},{'A',4},{'C',5},{'E',6},{'G',7}};
int TreeNode1[NSIZE1][2] = {{'0',0},{'A',1},{'B',2},{'C',3},{'D',4},{'E',5},{'F',6},{'G',7}};
int TreeNode2[NSIZE2][2] = {{'0',0},{'A',1},{'B',2},{'C',3},{'D',4},{'E',5},{'F',6},{'G',7},{'H',8},{'I',9},{'J',10},{'K',11},{'L',12},{'M',13},{'N',14}};
int InsertNode[ISIZE] = {-10,-8,-5,-1,0,12,14,16};
//char *prestr = "ABDECFG";
//char *midstr = "DBEACGF";
/*
 
二叉树创建函数dCreateBranchTree1()<递归算法>
 
参数描述:

  int array[]: 
二叉树节点数据域数组
  int i:   
当前节点的序号
  int n:   
二叉树节点个数
 
返回值:
  dCreateBranchTree1 =
新建二叉树的根节点指针

 
备注:
  
根节点
= array[(i+j)/2];
  
左子节点
= [array[i],array[(i+j)2-1]]
  
右子节点
= [array[(i+j)/2+1,array[j]]
*/
BTNode *dCreateBranchTree1(char array[],int i,int n)
{
 BTNode *p; /*
二叉树节点
*/
 if(i>=n)
  return(NULL);
 p = (BTNode *)malloc(sizeof(BTNode));
 p->data = array[i];
 p->lchild = dCreateBranchTree1(array,2*i+1,n);
 p->rchild = dCreateBranchTree1(array,2*i+2,n);
 return(p);
}
/*
 
二叉树创建函数dCreateBranchTree2()<递归算法
>
 
参数描述:

  int array[]: 
二叉树节点数据域数组
  int i:   
当前节点的序号
  int n:   
二叉树节点个数
 
返回值:
  dCreateBranchTree2 =
新建二叉树的根节点指针

 
备注:
  
根节点
= array[(i+j)/2];
  
左子节点
= [array[i],array[(i+j)2-1]]
  
右子节点
= [array[(i+j)/2+1,array[j]]
*/
BTNode *dCreateBranchTree2(char array[],int i,int j)
{
 BTNode *p; /*
二叉树节点
*/
 if(i>j)
  return(NULL);
 p = (BTNode *)malloc(sizeof(BTNode));
 p->data = array[(i+j)/2];
 p->lchild = dCreateBranchTree2(array,i,(i+j)/2-1);
 p->rchild = dCreateBranchTree2(array,(i+j)/2+1,j);
 return(p);
}
/*
 
二叉树创建函数dCreateBranchTree3()<非递归算法
>
 
已知二叉树的前,中序遍历序列串,构造对应的二叉树

 <
编程思想>:
  
首先,在前序遍历序列中的首元素是二叉树的根节点,接着

 ,
在中序遍历序列中找到此节点,那么在此节点以前的节点必为
 
其左孩子节点,以后的必为其右孩子节点;
  
然后,在中序遍历序列中,根节点的左子树和右子树再分别

 
对应子树前序遍历序列的首字符确定子树的根节点,再由中序
 
遍历序列中根节点的位置分别确定构成它们的左子树和右子树
 
的节点;
  
依次类推,确定二叉树的全部节点,构造出二叉树
.
 
参数描述:

  char *pre:  
前序遍历序列
  char *mid:  
中序遍历序列
  int n:   
遍历序列中节点个数
 
返回值:
  dCreateBranchTree3 =
新建二叉树的根节点指针

*/
BTNode *dCreateBranchTree3(char *pre,char *mid,int n)
{
 BTNode *p;
 char *t;
 int left;
 if(n<=0)
  return(NULL);
 p = (BTNode *)malloc(sizeof(BTNode));
 p->data = *pre;
 for(t=mid;t<mid+n;t++)
  if(*t==*pre) break;  /*
在中序遍历序列中查找根节点*/
 left = t - mid;  /*
左子树的节点个数
*/
 p->lchild = dCreateBranchTree3(pre+1,t,left);
 p->rchild = dCreateBranchTree3(pre+1+left,t+1,n-1-left);
 return(p);
}
/*
 
二叉树创建函数CreateBranchTree()<非递归算法
>
 
参数描述:

  int array[]: 
二叉树节点数据域数组
  int n:   
二叉树节点个数
 
返回值:
  CreateBranchTree =
新建二叉树的根节点指针

*/
BTNode *CreateBranchTree(int array[][2],int n)
{
 BTNode *head,*p;
 BTNode *NodeAddr[MAXNODE]; //
节点地址临时缓冲区
 int i,norder,rorder;
 head = NULL;
 printf("
二叉树原始数据<新建顺序>/t");
 for(i=1;i<=n;i++)
 {
  p = (BTNode *)malloc(sizeof(BTNode));
  if(p==NULL)
  {
   printf("/n
新建节点时内存溢出!
/n");
   return(NULL);
  }
  else
  {
   p->data = array[i][0];
   p->lchild = p->rchild = NULL;
   norder = array[i][1];
   NodeAddr[norder] = p;
   if(norder>1)
   {
    rorder = norder / 2; /*
非根节点:挂接在自己的父节点上
*/
    if(norder % 2 == 0)
     NodeAddr[rorder]->lchild = p;
    else
     NodeAddr[rorder]->rchild = p;
   }
   else
    head = p; /*
根节点
*/
   if(SHOWCHAR)
    printf("%c    ",p->data);
   else
    printf("%d    ",p->data);
  }
 }
 return(head);
}
//------------------------------
递归部分
------------------------------
/*
 
二叉树前序遍历函数dpre_Order_Access()<递归算法
>
 
参数描述:

  BTNode *head: 
二叉树的根节点指针  
*/
void dpre_Order_Access(BTNode *head)
{
 if(head!=NULL)
 {
  if(SHOWCHAR)
   printf("%c    ",head->data);
  else
   printf("%d    ",head->data);
  dpre_Order_Access(head->lchild); /*
递归遍历左子树
*/
  dpre_Order_Access(head->rchild); /*
递归遍历右子树
*/
 }
}
/*
 
二叉树中序遍历函数dmid_Order_Access()<递归算法
>
 
参数描述:

  BTNode *head: 
二叉树的根节点指针  
*/
void dmid_Order_Access(BTNode *head)
{
 if(head!=NULL)
 {
  dmid_Order_Access(head->lchild); /*
递归遍历左子树
*/
  if(SHOWCHAR)
   printf("%c    ",head->data);
  else
   printf("%d    ",head->data);
  dmid_Order_Access(head->rchild); /*
递归遍历右子树
*/
 }
}
/*
 
二叉树后序遍历函数dlast_Order_Access()<递归算法
>
 
参数描述:

  BTNode *head: 
二叉树的根节点指针  
*/
void dlast_Order_Access(BTNode *head)
{
 if(head!=NULL)
 {
  dlast_Order_Access(head->lchild); /*
递归遍历左子树
*/
  dlast_Order_Access(head->rchild); /*
递归遍历右子树
*/
  if(SHOWCHAR)
   printf("%c    ",head->data);
  else
   printf("%d    ",head->data);
 }
}
//------------------------------
递归部分
------------------------------
//------------------------------
非递归部分
------------------------------
/*
 
二叉树前序遍历函数pre_Order_Access()<非递归算法
>
 
参数描述:

  BTNode *head: 
二叉树的根节点指针  
*/
void pre_Order_Access(BTNode *head)
{
 BTNode *pt;
 ABTStack *ps,*top;
 pt = head;
 top = NULL;
 printf("/n
二叉树的前序遍历结果<非递归>
/t");
 while(pt!=NULL ||top!=NULL)  /*
二叉树未遍历完,或堆栈非空
*/
 {
  while(pt!=NULL)
  {
   if(SHOWCHAR)
    printf("%c    ",pt->data);  /*
访问根节点
*/
   else
    printf("%d    ",pt->data);  /*
访问根节点
*/
   ps = (ABTStack *)malloc(sizeof(ABTStack));  /*
根节点进栈
*/
   ps->ptree = pt;
   ps->link = top;
   top = ps;
   pt = pt->lchild; /*
遍历节点右子树,经过的节点依次进栈
*/
  }
  if(top!=NULL)
  {
   pt = top->ptree; /*
栈顶节点出栈
*/
   ps = top;
   top = top->link;
   free(ps); /*
释放栈顶节点空间
*/
   pt = pt->rchild; /*
遍历节点右子树
*/
  }
 }
}
/*
 
二叉树中序遍历函数mid_Order_Access()<非递归算法
>
 
参数描述:

  BTNode *head: 
二叉树的根节点指针 
*/
void mid_Order_Access(BTNode *head)
{
 BTNode *pt;
 ABTStack *ps,*top;
 int counter =1;
 pt = head;
 top = NULL;
 printf("/n
二叉树的中序遍历结果<非递归>
/t");
 while(pt!=NULL ||top!=NULL)  /*
二叉树未遍历完,或堆栈非空
*/
 {
  while(pt!=NULL)
  {  
   ps = (ABTStack *)malloc(sizeof(ABTStack)); /*
根节点进栈
*/
   ps->ptree = pt;
   ps->link = top;
   top = ps;
   pt = pt->lchild; /*
遍历节点右子树,经过的节点依次进栈
*/
  }
  if(top!=NULL)
  {
   pt = top->ptree; /*
栈顶节点出栈
*/
   ps = top;
   top = top->link;
   free(ps); /*
释放栈顶节点空间
*/
   if(SHOWCHAR)
    printf("%c    ",pt->data); /*
访问根节点
*/
   else
    printf("%d    ",pt->data); /*
访问根节点
*/
   pt = pt->rchild; /*
遍历节点右子树
*/
  }
 }
}
/*
 
二叉树后序遍历函数last_Order_Access()<非递归算法
>
 
参数描述:

  BTNode *head: 
二叉树的根节点指针  
*/
void last_Order_Access(BTNode *head)
{
 BTNode *pt;
 ABTStack *ps,*top;
 int counter =1;
 pt = head;
 top = NULL;
 printf("/n
二叉树的后序遍历结果<非递归>
/t");
 while(pt!=NULL ||top!=NULL)  /*
二叉树未遍历完,或堆栈非空
*/
 {
  while(pt!=NULL)
  {  
   ps = (ABTStack *)malloc(sizeof(ABTStack)); /*
根节点进栈
*/
   ps->ptree = pt;
   ps->link = top;
   top = ps;
   pt = pt->lchild; /*
遍历节点右子树,经过的节点依次进栈
*/
  }
  if(top!=NULL)
  {
   pt = top->ptree; /*
栈顶节点出栈
*/
   ps = top;
   top = top->link;
   free(ps); /*
释放栈顶节点空间
*/
   printf("%c    ",pt->data); /*
访问根节点
*/
   pt = pt->rchild; /*
遍历节点右子树
*/
  }
 }
}
/*
 
二叉查找树静态查找函数static_Search_STree()<非递归算法
>
 
参数描述:

  BTNode *head: 
二叉查找树的根节点指针
  int key:  
查找关键码
 
返回值:
  static_Search_STree =
键值为key的节点指针(找到

  static_Search_STree = NULL(
没有找到
)
*/
BTNode *static_Search_STree(BTNode *head,int key)
{
 while(head!=NULL)
 {
  if(head->data == key)
  {
   printf("/n
数据域=%d/t地址
=%d/t/n",head->data,head);
   return(head); /*
找到
*/
  }
  if(head->data > key)
   head = head->lchild; /*
继续沿左子树搜索
*/
  else
   head = head->rchild; /*
继续沿右子树搜索
*/
 }
 return(NULL); /*
没有查找
*/
}
/*
 
二叉查找树动态查找函数dynamic_Search_STree()<非递归算法
>
 
参数描述:

  BTNode *head:  
二叉查找树的根节点指针
  BTNode **parent: 
键值为key的节点的父节点指针的指针
  BTNode **head:  
键值为key的节点指针的指针(找到)NULL(没有找到)
  int key:   
查找关键码

 
注意:
  *parent == NULL
*p == NULL 没有找到(二叉树为空
)
  *parent == NULL
*p != NULL 找到(找到根节点
)
  *parent != NULL
*p == NULL 没有找到(叶节点)<可在parent后插入节点
>
  *parent != NULL
*p != NULL 找到(中间层节点
)
*/
void dynamic_Search_STree(BTNode *head,BTNode **parent,BTNode **p,int key)
{
 *parent = NULL;
 *p = head;
 while(*p!=NULL)
 {
  if((*p)->data == key)
   return; /*
找到
*/
  *parent = *p; /*
以当前节点为父,继续查找
*/
  if((*p)->data > key)
   *p = (*p)->lchild; /*
继续沿左子树搜索
*/
  else
   *p = (*p)->rchild; /*
继续沿右子树搜索
*/
 }
}
/*
 
二叉查找树插入节点函数Insert_Node_STree()<非递归算法
>
 
参数描述:

  BTNode *head: 
二叉查找树的根节点指针
  int key:  
查找关键码
 
返回值:
  Insert_Node_STree = 1 
插入成功

  Insert_Node_STree = 0 
插入失败(节点已经存在)
*/
int Insert_Node_STree(BTNode *head,int key)
{
 BTNode *p,*q,*nnode;
 dynamic_Search_STree(head,&p,&q,key);
 if(q!=NULL)
  return(0);  /*
节点在树中已经存在
*/
 nnode = (BTNode *)malloc(sizeof(BTNode)); /*
新建节点
*/
 nnode->data = key;
 nnode->lchild = nnode->rchild = NULL;
 if(p==NULL)
  head = p; /*
原树为空,新建节点为查找树
*/
 else
 {
  if(p->data > key)
   p->lchild = nnode; /*
作为左孩子节点
*/
  else
   p->rchild = nnode; /*
作为右孩子节点
*/
 }
 return(1); /*
插入成功
*/
}
/*
 
二叉查找树插入一批节点函数Insert_Batch_Node_STree()<非递归算法
>
 
参数描述:

  BTNode *head: 
二叉查找树的根节点指针
  int array[]: 
被插入的数据域数组
  int n:   
被插入的节点数目
*/
void Insert_Batch_Node_STree(BTNode *head,int array[],int n)
{
 int i;
 for(i=0;i<n;i++)
 {
  if(!Insert_Node_STree(head,array[i]))
   printf("/n
插入失败<键值为%d的节点已经存在>/n",array[i]); 
 }
}
//------------------------------
非递归部分------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值