总结工作中用到及学习的知识,也算自己的一个笔记。
-
环境准备
#公司环境为Centos7.3yum install gcc gcc-c++yum install boostyum install boost-develyum install zlibyum install zlib-develwget -O - https://kheafield.com/code/kenlm.tar.gz | tar xzmkdir kenlm/buildcd kenlm/build && cmake .. && make -j8cd kenlm/build && make install
-
语言模型训练
我们通过命令行的方式使用kenlm,在我们的训练集语料上训练语言模型,命令为 lmplz -o 5 <text > text.arpa-o 后面的数字5代表使用N-gram的N取值为5text.arpa 表示kenlm训练得到的文件格式为.arpa格式,名字为text基于人民日报语料训练:lmplz -o 2 <trainCorpus.txt_utf8> /opt/nlp/corpus/data.arpa注意:必须是分好吃的的语料。
-
模型压缩
对训练得到的文件进行压缩:将arpa文件转换为binary文件,这

这篇博客总结了使用Kenlm进行语言模型训练和模型压缩的过程,包括环境准备、arpa到binary文件的转换以提高加载速度,以及如何在Python中安装Kenlm接口并进行智能纠错的应用。
最低0.47元/天 解锁文章
1525

被折叠的 条评论
为什么被折叠?



