数据分析的新形式--自然语言搜索:NL2SQL2Graph 数据分析的新形式--自然语言搜索:NL2SQL2Graph背景定位分析能力模型调研实现背景自然语言转SQL,再将SQL结果集转图形,在NLP领域是个非常不错的研究方向,这样做的好处在我看来,主要有以下点:1、数据分析人员无需写Code(SQL)实现取数,搜索数据,灵活方便,支持快速多变的adhoc查询2、相对于报表和BI系统,数据分析人员主动探索数据,而不是被动接收相对固定的报表3、搜...
SnappyData企业版中off-heap功能及与on-heap功能的对比 目录:1、SnappyData OSS的功能介绍2、SnappyData企业版的额外功能3、企业版off-heap功能的对比与测试4、结论5、参考1、SnappyData OSS的功能介绍OSS是Open Source SnappyData Community Edition的简称,其是一个基于Apache 2.0的开源的分布式数据库产品,包含了如下的功能...
SnappyData-一个构建在Spark上的支持实时HTAP场景的解决方案 1、设计目标1、实时的OLTP+OLAP型的操作2、数据规模在50TB-100TB以下:太大规模的数据(PB规模),还要求实时出结果的场景,并不是SnappyData的设计目标。3、微批的流失写入:实时数据的写入最好按批次写入。例如列表上的频繁的基于点的update,效率并不是很高。2、数据流 上图介绍了流数据的注入以及
SnappyData--一个统一OLTP+OLAP+流式写入的内存分布式数据库 一、背景: 阔别个人博客有大半年了,这大半年来我从一个all in flink的角色转变到了一个兼顾实时流式处理与实时OLAP处理的角色。 最近由于工作需要,在关注实时的OLTP+OLAP的HTAP场景的数据处理,优先保证低延迟的OLAP查询。说到这里,很容易让人想到Google的F1、Spanner,开源领域的代表TiDB。TiDB是个分布式的MySQL,对OLTP的支持很好