机器学习
文章平均质量分 93
赫加青空
纸上得来终觉浅,绝知此事要躬行
展开
-
机器学习原理(1)集成学习基本方法
集成学习的基础知识原创 2023-07-25 18:25:13 · 1073 阅读 · 0 评论 -
机器学习实践(2.2)LightGBM回归任务
lightgbm回归任务原创 2023-07-14 21:45:00 · 4672 阅读 · 2 评论 -
机器学习实践(2.1)LightGBM分类任务
LightGBM,集成学习的集大成者,本文为其分类使用的简要介绍原创 2023-07-12 18:45:00 · 3668 阅读 · 2 评论 -
机器学习实践(1.2)XGBoost回归任务
XGBoost属于Boosting集成学习模型,本文描述XGBoost的回归任务实践原创 2023-06-21 17:31:46 · 8137 阅读 · 11 评论 -
机器学习实践(1.1)XGBoost分类任务
XGBoost分类任务的简单实现原创 2023-06-16 18:00:31 · 2343 阅读 · 3 评论 -
XGBoost算法原理及基础知识
XGBoost基础知识介绍原创 2022-11-29 22:44:56 · 3170 阅读 · 6 评论 -
Graphviz绘制模型树2——XGBoost模型的可解释性
从二分类模型中的树重新理解XGBoost算法原创 2022-08-20 16:51:23 · 3894 阅读 · 7 评论 -
Graphviz绘制模型树1——软件配置与XGBoost树的绘制
通过graphviz绘制XGBoost二分类模型中树的绘制,to_graphviz()和plot_tree()原创 2022-08-20 16:47:13 · 3805 阅读 · 2 评论 -
分类任务评估2——推导ROC曲线、P-R曲线和K-S曲线
本文推导只借助2个最基础的工具包,不使用任何sklearn的模块原创 2022-06-30 15:11:24 · 1744 阅读 · 0 评论 -
分类任务评估1——推导sklearn分类任务评估指标
二分类问题中,准确率、精准率、召回率、F1值、ROC曲线、AUC值都是基于混淆矩阵展开计算的。原创 2022-06-19 14:59:28 · 3628 阅读 · 0 评论 -
XGBoost模型调参、训练、保存、评估和预测
xgboost模型调参、训练、保存、评估、预测原创 2022-04-20 12:01:58 · 46566 阅读 · 42 评论
分享