基于attention的BiGRU的keras实现

本文介绍了如何使用TensorFlow构建一个基于双向GRU和注意力机制的神经机器翻译模型,包括定义输入处理、编码器-解码器结构、注意力机制应用以及模型训练与推理。重点讲解了批量处理和单独推理阶段的模型构建,并提供了GitHub代码示例。
摘要由CSDN通过智能技术生成
from tensorflow.python.keras.layers import Input, GRU, Dense, Concatenate, TimeDistributed, Bidirectional
from tensorflow.python.keras.models import Model
from layers.attention import AttentionLayer


def define_nmt(hidden_size, batch_size, en_timesteps, en_vsize, fr_timesteps, fr_vsize):
    """ Defining a NMT model """

    # Define an input sequence and process it.
    if batch_size:
        encoder_inputs = Input(batch_shape=(batch_size, en_timesteps, en_vsize), name='encoder_inputs')
        decoder_inputs = Input(batch_shape=(batch_size, fr_timesteps - 1, fr_vsize), name='decoder_inputs')
    else:
        encoder_inputs = Input(shape=(en_timesteps, en_vsize), name='encoder_inputs')
        decoder_inputs = Input(shape=(fr_timesteps - 1, fr_vsize), name='decoder_inputs')

    # Encoder GRU
    encoder_gru = Bidirectional(GRU(hidden_size, return_sequences=True, return_state=True, name='encoder_gru'), name='bidirectional_encoder')
    encoder_out, encoder_fwd_state, encoder_back_state = encoder_gru(encoder_inputs)

    # Set up the decoder GRU, using `encoder_states` as initial state.
    decoder_gru = GRU(hidden_size*2, return_sequences=True, return_state=True, name='decoder_gru')
    decoder_out, decoder_state = decoder_gru(
        decoder_inputs, initial_state=Concatenate(axis=-1)([encoder_fwd_state, encoder_back_state])
    )

    # Attention layer
    attn_layer = AttentionLayer(name='attention_layer')
    attn_out, attn_states = attn_layer([encoder_out, decoder_out])

    # Concat attention input and decoder GRU output
    decoder_concat_input = Concatenate(axis=-1, name='concat_layer')([decoder_out, attn_out])

    # Dense layer
    dense = Dense(fr_vsize, activation='softmax', name='softmax_layer')
    dense_time = TimeDistributed(dense, name='time_distributed_layer')
    decoder_pred = dense_time(decoder_concat_input)

    # Full model
    full_model = Model(inputs=[encoder_inputs, decoder_inputs], outputs=decoder_pred)
    full_model.compile(optimizer='adam', loss='categorical_crossentropy')

    full_model.summary()

    """ Inference model """
    batch_size = 1

    """ Encoder (Inference) model """
    encoder_inf_inputs = Input(batch_shape=(batch_size, en_timesteps, en_vsize), name='encoder_inf_inputs')
    encoder_inf_out, encoder_inf_fwd_state, encoder_inf_back_state = encoder_gru(encoder_inf_inputs)
    encoder_model = Model(inputs=encoder_inf_inputs, outputs=[encoder_inf_out, encoder_inf_fwd_state, encoder_inf_back_state])

    """ Decoder (Inference) model """
    decoder_inf_inputs = Input(batch_shape=(batch_size, 1, fr_vsize), name='decoder_word_inputs')
    encoder_inf_states = Input(batch_shape=(batch_size, en_timesteps, 2*hidden_size), name='encoder_inf_states')
    decoder_init_state = Input(batch_shape=(batch_size, 2*hidden_size), name='decoder_init')

    decoder_inf_out, decoder_inf_state = decoder_gru(
        decoder_inf_inputs, initial_state=decoder_init_state)
    attn_inf_out, attn_inf_states = attn_layer([encoder_inf_states, decoder_inf_out])
    decoder_inf_concat = Concatenate(axis=-1, name='concat')([decoder_inf_out, attn_inf_out])
    decoder_inf_pred = TimeDistributed(dense)(decoder_inf_concat)
    decoder_model = Model(inputs=[encoder_inf_states, decoder_init_state, decoder_inf_inputs],
                          outputs=[decoder_inf_pred, attn_inf_states, decoder_inf_state])

    return full_model, encoder_model, decoder_model


if __name__ == '__main__':

    """ Checking nmt model for toy examples """
    define_nmt(64, None, 20, 30, 20, 20)

github链接:https://github.com/Razzaghnoori/mt_biGRU_attention_keras/blob/master/model.py

以下是使用Keras实现LSTM Attention的示例代码: 首先,我们导入所需的库: ```python from keras.layers import Input, Embedding, LSTM, Dense, Dot, Activation from keras.models import Model from keras.optimizers import Adam ``` 然后,我们定义我们的模型: ```python # 定义参数 max_sequence_length = 100 embedding_dim = 100 lstm_units = 128 attention_dim = 50 output_dim = 1 # 定义输入 input_sequences = Input(shape=(max_sequence_length,), dtype='int32') # 定义嵌入层,用于将输入的整数序列转换为密集向量 x = Embedding(input_dim=vocab_size + 1, output_dim=embedding_dim, input_length=max_sequence_length, mask_zero=True, name='Embedding')(input_sequences) # 定义LSTM层,用于处理输入序列 lstm = LSTM(units=lstm_units, return_sequences=True, name='LSTM')(x) # 定义注意力机制,用于给LSTM层的输出分配权重 attention = Dense(units=attention_dim, activation='tanh', name='Attention')(lstm) attention = Dot(axes=(2, 1), name='Dot')([attention, lstm]) attention = Activation('softmax', name='Softmax')(attention) # 加权求和,使用注意力权重加权LSTM输出 context = Dot(axes=(2, 1), name='Context')([attention, lstm]) # 最终输出,使用sigmoid激活函数进行二元分类 output = Dense(units=output_dim, activation='sigmoid', name='Output')(context) # 定义模型 model = Model(inputs=input_sequences, outputs=output) # 编译模型并训练 model.compile(optimizer=Adam(lr=0.001), loss='binary_crossentropy', metrics=['accuracy']) ``` 此代码定义了一个具有嵌入层、LSTM层、注意力层和输出层的模型。在嵌入层中,我们将输入序列转换为密集向量。在LSTM层中,我们处理输入序列。在注意力层中,我们分配注意力权重。在输出层中,我们使用sigmoid激活函数进行二元分类。最后,我们使用Adam优化器编译模型,并使用二元交叉熵损失和准确率作为评估指标进行训练。 注意:以上代码是一种常见的LSTM Attention实现方法,但也可以有其他实现方式。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值