欢迎使用CSDN-markdown编辑器

本文介绍了一款基于StackEdit修改而来的Markdown编辑器,它提供了Markdown和扩展Markdown语法、代码块高亮、图片链接与上传、LaTeX数学公式、UML序列图与流程图等功能。支持离线写博客、导入导出Markdown文件,并拥有丰富的快捷键操作。

欢迎使用Markdown编辑器写博客

本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:

  • Markdown和扩展Markdown简洁的语法
  • 代码块高亮
  • 图片链接和图片上传
  • LaTex数学公式
  • UML序列图和流程图
  • 离线写博客
  • 导入导出Markdown文件
  • 丰富的快捷键

快捷键

  • 加粗 Ctrl + B
  • 斜体 Ctrl + I
  • 引用 Ctrl + Q
  • 插入链接 Ctrl + L
  • 插入代码 Ctrl + K
  • 插入图片 Ctrl + G
  • 提升标题 Ctrl + H
  • 有序列表 Ctrl + O
  • 无序列表 Ctrl + U
  • 横线 Ctrl + R
  • 撤销 Ctrl + Z
  • 重做 Ctrl + Y

Markdown及扩展

Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档,然后转换成格式丰富的HTML页面。 —— [ 维基百科 ]

使用简单的符号标识不同的标题,将某些文字标记为粗体或者斜体,创建一个链接等,详细语法参考帮助?。

本编辑器支持 Markdown Extra ,  扩展了很多好用的功能。具体请参考Github.

表格

Markdown Extra 表格语法:

项目价格
Computer$1600
Phone$12
Pipe$1

可以使用冒号来定义对齐方式:

项目价格数量
Computer1600 元5
Phone12 元12
Pipe1 元234

定义列表

Markdown Extra 定义列表语法: 项目1 项目2
定义 A
定义 B
项目3
定义 C

定义 D

定义D内容

代码块

代码块语法遵循标准markdown代码,例如:

@requires_authorization
def somefunc(param1='', param2=0):
    '''A docstring'''
    if param1 > param2: # interesting
        print 'Greater'
    return (param2 - param1 + 1) or None
class SomeClass:
    pass
>>> message = '''interpreter
... prompt'''

脚注

生成一个脚注1.

目录

[TOC]来生成目录:

数学公式

使用MathJax渲染LaTex 数学公式,详见math.stackexchange.com.

  • 行内公式,数学公式为: Γ(n)=(n1)!nN
  • 块级公式:

x=b±b24ac2a

更多LaTex语法请参考 这儿.

UML 图:

可以渲染序列图:

Created with Raphaël 2.1.2 张三 张三 李四 李四 嘿,小四儿, 写博客了没? 李四愣了一下,说: 忙得吐血,哪有时间写。

或者流程图:

Created with Raphaël 2.1.2 开始 我的操作 确认? 结束 yes no
  • 关于 序列图 语法,参考 这儿,
  • 关于 流程图 语法,参考 这儿.

离线写博客

即使用户在没有网络的情况下,也可以通过本编辑器离线写博客(直接在曾经使用过的浏览器中输入write.blog.csdn.net/mdeditor即可。Markdown编辑器使用浏览器离线存储将内容保存在本地。

用户写博客的过程中,内容实时保存在浏览器缓存中,在用户关闭浏览器或者其它异常情况下,内容不会丢失。用户再次打开浏览器时,会显示上次用户正在编辑的没有发表的内容。

博客发表后,本地缓存将被删除。 

用户可以选择 把正在写的博客保存到服务器草稿箱,即使换浏览器或者清除缓存,内容也不会丢失。

注意:虽然浏览器存储大部分时候都比较可靠,但为了您的数据安全,在联网后,请务必及时发表或者保存到服务器草稿箱

浏览器兼容

  1. 目前,本编辑器对Chrome浏览器支持最为完整。建议大家使用较新版本的Chrome。
  2. IE9以下不支持
  3. IE9,10,11存在以下问题
    1. 不支持离线功能
    2. IE9不支持文件导入导出
    3. IE10不支持拖拽文件导入


  1. 这里是 脚注内容.
内容概要:本文介绍了基于Zernike矩的乳腺肿块良恶性分类方法,结合快速相反权重学习规则,在Matlab平台上实现了医学图像特征提取与分类的自动【基于Zernike矩的良性和恶性肿块的分类】应用于乳腺癌诊断中的快速相反权重学习规则(Matlab代码实现)化流程。Zernike矩用于提取乳腺肿块的形状和纹理特征,具有良好的旋转不变性,适用于医学图像分析;快速相反权重学习规则则用于优化分类过程,提高诊断准确率和效率。文中提供了完整的Matlab代码实现,便于研究人员复现和进一步优化算法。此外,文档还列举了多个相关科研方向和技术应用,展示了该方法在生物医学工程与智能诊断系统中的潜力。; 适合人群:具备一定Matlab编程基础,从事医学图像处理、模式识别、人工智能或生物医学工程领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于乳腺癌早期辅助诊断系统,提升医学影像分析的自动化水平;②作为科研教学案例,帮助理解图像特征提取(如Zernike矩)与智能分类算法的结合应用;③为优化医学图像分类模型提供可复现的技术路径与代码参考。; 阅读建议:建议读者结合提供的Matlab代码逐模块运行与调试,深入理解Zernike矩的特征提取机制及分类器训练过程,同时可拓展学习文档中提及的相关算法(如支持向量机、深度学习等),以构建更高效的医学图像分析系统。
内容概要:本文围绕“基基于非Copula理论的股票投资组合预测:利用高斯定理预测股票亏损风险研究(Matlab代码实现)于非Copula理论的股票投资组合预测:利用高斯定理预测股票亏损风险研究”展开,提出了一种不依赖Copula函数的金融风险建模方法,通过高斯定理对股票收益率的分布特性进行建模,进而预测投资组合的亏损风险。研究重点在于构建符合实际金融市场特征的风险评估模型,利用Matlab实现相关算法,对股票投资组合的尾部风险和极端亏损情况进行量化分析,并与传统Copula方法进行对比,突出非Copula方法在特定条件下的有效性与简洁性。文中还涉及风险价值(VaR)和条件风险价值(CVaR)等指标的应用,强化了模型在实际投资决策中的实用性。; 适合人群:具备一定金融工程、统计学或数量经济学背景,熟悉Matlab编程,从事金融风险管理、投资组合优化及相关领域研究的研究生、科研人员及金融行业从业者。; 使用场景及目标:①用于金融领域中股票投资组合的风险评估与管理;②为不希望引入复杂依赖结构建模(如Copula)的研究者提供替代性风险预测方案;③通过Matlab代码实现,帮助用户理解高斯定理在金融风险预测中的具体应用流程,支持学术研究复现与工业级风险监控系统开发。; 阅读建议:建议读者结合Matlab代码逐段理解模型构建过程,重点关注收益率分布假设、高斯定理的应用逻辑及风险指标的计算方法。同时可将该方法与文档中提及的Copula方法进行对比实验,以深入掌握不同建模思路的优劣与适用范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值