题目背景
John的农场缺水了!!!
题目描述
Farmer John has decided to bring water to his N (1 <= N <= 300) pastures which are conveniently numbered 1..N. He may bring water to a pasture either by building a well in that pasture or connecting the pasture via a pipe to another pasture which already has water.
Digging a well in pasture i costs W_i (1 <= W_i <= 100,000).
Connecting pastures i and j with a pipe costs P_ij (1 <= P_ij <= 100,000; P_ij = P_ji; P_ii=0).
Determine the minimum amount Farmer John will have to pay to water all of his pastures.
POINTS: 400
农民John 决定将水引入到他的边长为n(1<=n<=300)的牧场。他准备通过挖若
干井,并在各块田中修筑水道来连通各块田地以供水。在第i 号田中挖一口井需要花费W_i(1<=W_i<=100,000)元。连接i 号田与j 号田需要P_ij (1 <= P_ij <= 100,000 , P_ji=P_ij)元。
请求出农民John 需要为连通整个牧场的每一块田地所需要的钱数。
输入输出格式
输入格式:
第1 行为一个整数n。
第2 到n+1 行每行一个整数,从上到下分别为W_1 到W_n。
第n+2 到2n+1 行为一个矩阵,表示需要的经费(P_ij)。
输出格式:
只有一行,为一个整数,表示所需要的钱数。
输入输出样例
输入样例#1:
4
5
4
4
3
0 2 2 2
2 0 3 3
2 3 0 4
2 3 4 0
输出样例#1:
9
说明
John等着用水,你只有1s时间!!!
思路:看到题面很容易想到最小生成树,但这题难在有一个水井系统。
考虑到无论如何最少也需要打一口井,所以我们可以将水井看做一个点,连接田地和水
井的费用即打井的费用,之后就可以求最小生成树了。
题解:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
struct cc{
int from,to,cost;
}es[100000];
int val[505],f[505];
int tot=0;
void build(int ff,int tt,int pp)
{
tot++;
es[tot].from=ff;
es[tot].to=tt;
es[tot].cost=pp;
}
int cmp(cc a,cc b)
{
return a.cost<b.cost;
}
int find(int w)
{
if(w!=f[w])
{
f[w]=find(f[w]);
}
return f[w];
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&val[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
int fee;
scanf("%d",&fee);
build(i,j,fee);
}
}
for(int i=1;i<=n;i++)
{
build(0,i,val[i]);
}
for(int i=1;i<=n;i++)
{
f[i]=i;
}
sort(es+1,es+n*n+n+1,cmp);
int ans=0;
for(int i=1;i<=n*n+n+1;i++)
{
if(find(es[i].from)!=find(es[i].to))
{
f[find(es[i].from)]=find(es[i].to);
ans+=es[i].cost;
}
}
printf("%d",ans);
return 0;
}