Codeforces Yandex.Algorithm 2011 Round 2 D

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Loi_Shirley/article/details/54696215

D. Powerful array
time limit per test5 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
An array of positive integers a1, a2, …, an is given. Let us consider its arbitrary subarray al, al + 1…, ar, where 1 ≤ l ≤ r ≤ n. For every positive integer s denote by Ks the number of occurrences of s into the subarray. We call the power of the subarray the sum of products Ks·Ks·s for every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.

You should calculate the power of t given subarrays.

Input
First line contains two integers n and t (1 ≤ n, t ≤ 200000) — the array length and the number of queries correspondingly.

Second line contains n positive integers ai (1 ≤ ai ≤ 106) — the elements of the array.

Next t lines contain two positive integers l, r (1 ≤ l ≤ r ≤ n) each — the indices of the left and the right ends of the corresponding subarray.

Output
Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th query subarray.

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use %I64d).

Examples
input
3 2
1 2 1
1 2
1 3
output
3
6
input
8 3
1 1 2 2 1 3 1 1
2 7
1 6
2 7
output
20
20
20
Note
Consider the following array (see the second sample) and its [2, 7] subarray (elements of the subarray are colored):
这里写图片描述
Then K1 = 3, K2 = 2, K3 = 1, so the power is equal to 321 + 222 + 123 = 20.

题目大意
给定一个长度为n的序列,t次询问区间内答案
答案计算方式:某个数的出现次数*该数的平方

据说是个莫队裸题
计算的时候有特殊技巧不会TTTTTTLE
详情见代码//我需要想想证明怎么写x

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXM = 1111111;
const int P = 555;
int cl,cr;//头 尾 当前包括区间 
int first[MAXM],nxt[MAXM],cc[MAXM];//链表 出现次数 
int n,m,num[MAXM],l[MAXM],r[MAXM];//离线大法好 
long long ans = 0,anss[MAXM];
int cnt = 0;//块数
//据说莫队 

int main()
{
    memset(l,0,sizeof(l));
    memset(r,0,sizeof(r));
    memset(num,0,sizeof(num));
    memset(cc,0,sizeof(cc));
    scanf("%d %d",&n,&m);
    for(int i = 0; i < n; i ++) scanf("%d",&num[i]);
//  cnt = n / P + 1;
    cnt = (n + P - 1) / P;
    for(int i = 1; i <= m; i ++)
    {
        scanf("%d %d",&l[i],&r[i]);
        l[i] --,r[i] --;
        int j = l[i] / P * cnt + r[i] / P;
        nxt[i] = first[j];  first[j] = i;
    }

    cl = 0,cr = n - 1; 
    for(int i = 0; i < n; i ++)
    {
        ans += (long long)(num[i] * (2 * cc[num[i]] + 1));//注意这个2 
    //  ans += num[i] * (2 * cc[num[i]] + 1);
        cc[num[i]] ++;
    }   

    //一定注意这个奇怪的运算不然会TTTTTTTLE 
    for(int i = 0; i < cnt * cnt; i ++)
        for(int j = first[i]; j > 0; j = nxt[j])
        {
            while(cl > l[j])//qu jian nei
            {
                cl --;
                ans += (long long)(num[cl] * (2 * cc[num[cl]] + 1));
                cc[num[cl]] ++;
            }
            while(cl < l[j])//ci shu bu gou
            {
                cc[num[cl]] --;
                ans -= (long long)(num[cl] * (2 * cc[num[cl]] + 1));
                cl ++;
            }
            while(cr < r[j])//qu jian nei
            {
                cr ++;
                ans += (long long)(num[cr] * (2 * cc[num[cr]] + 1));
                cc[num[cr]] ++;
            }
            while(cr > r[j])//ci shu bu gou
            {
                cc[num[cr]] --;
                ans -= (long long)(num[cr] * (2 * cc[num[cr]] + 1));
                cr --;
            }
            anss[j] = ans;
        }

        for(int i = 1; i <= m; i ++)    printf("%I64d\n",anss[i]);
        return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页