Ubuntu14.04-x64+Caffe

机器学习 同时被 3 个专栏收录
29 篇文章 0 订阅
109 篇文章 0 订阅

我电脑没有独立显卡,没有装cuda

大体安装过程参照http://blog.csdn.net/ubunfans/article/details/47724341。2/3/4/5步骤都跳过了。


相关记录


cmake
gcc


sudo uname --m 查看自己运行ubuntu是32位还是64位
sudo uname --s 显示内核名字s
sudo uname --r 显示内核版本
sudo uname --n 显示网络主机名
sudo uname --p 显示cpu 




unzip -o  filename.zip -d targetpath


sudo apt-get install libopencv-dev  则不用从源码编译额....


解决tiff函数找不到的问题 Undefined reference to TIFFReadDirectory@LIBTIFF_4.0
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D BUILD_TIFF=ON ..


undefined reference to `lzma_index_buffer_decode@XZ_5.0
在~/.bashrc最后添加路径:LD_LIBRARY_PATH="/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH"
然后在caffe路径sudo make,而make pycaffe不用sudo,否则也会找不到Python.h头文件的


libopencv_core.so.3.1: cannot open shared object file
进入目录:/etc/ld.so.conf.d
创建:opencv.conf
添加:/opt/opencv-3.0.0/build/lib   libopencv_core.so.3.1所在路径
执行:ldconfig


fatal error: Python.h: No such file or
./bashrc最后添加:
export CPLUS_INCLUDE_PATH="/home/blade/anaconda3/include:/home/blade/anaconda3/include/python3.5m:$CPLUS_INCLUDE_PATH"


build/examples/mnist/convert_mnist_data.bin: not found
./examples/mnist/create_mnist.sh   需要从根目录执行


I0317 23:38:14.744825 14885 caffe.cpp:185] Using GPUs 0
F0317 23:38:14.745519 14885 common.cpp:66] Cannot use GPU in CPU-only Caffe: check mode.
caffe-master的CMakeLists.txt里CPU-ONLY要设置为ON


makefile打印变量 $(warning var is $(VAR)) 



我的Makefile.config

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#	You should not set this flag if you will be reading LMDBs with any
#	possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
		-gencode arch=compute_20,code=sm_21 \
		-gencode arch=compute_30,code=sm_30 \
		-gencode arch=compute_35,code=sm_35 \
		-gencode arch=compute_50,code=sm_50 \
		-gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2.7 \
		/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/blade/anaconda3
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
		  $(ANACONDA_HOME)/include/python3.5m \
		  $(ANACONDA_HOME)/lib/python3.5/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @


用的3.5版本的python


最终步骤 make pycaffe 打印信息如下



参照http://www.csdn.net/article/2015-01-22/2823663?_client_version=4.0.1调用跑mnist的脚本时,都需要在caffe-master目录调用,而不是cd到里面再调用。另外,train_lenet.sh时,报错 Cannot use GPU in CPU-only Caffe,原因是我没有NVIDIA独立显卡,没有装gpu版本配置,所以要设置examples/mnist/lenet_solver.prototxt里的solver_mode从GPU改为CPU


最终可以训练mnist了!


  • 1
    点赞
  • 0
    评论
  • 0
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:撸撸猫 设计师:马嘣嘣 返回首页

打赏作者

lonelyrains

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值