飞思卡尔运动小车前方道路识别

基于OpenMV平台进行开发

特别注意:

1.适用于直线行驶过程中

2.保证前方没有障碍物

(障碍物识别正在开发过程中)

算法原理:

1.图像hough变换获取直线

2.判断道路

获取图像结果:


识别道路结果:


(存在时间误差)

程序代码:

import sensor, image, time
 
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QQVGA)
clock = time.clock()
k0 = 0
b0 = 0
k1 = 0
b1 = 0
while(True):
    clock.tick()
    img = sensor.snapshot()
    lines = img.find_lines(threshold = 1000, theta_margin = 25, rho_margin = 25)
    for i in range(0,len(lines)-1):
        for j in range(i+1,len(lines)):
            ax1 = lines[i].x1()
            ay1 = lines[i].y1()
            ax2 = lines[i].x2()
            ay2 = lines[i].y2()
            if(ax1 == ax2):
                ax1 = ax1 + 0.01
            k0 = (ay2 - ay1)/(ax2 - ax1)      # 第一条直线斜率
            b0 = ay1 - k0*ax1                 # 第一条直线截距
            bx1 = lines[j].x1()
            by1 = lines[j].y1()
            bx2 = lines[j].x2()
            by2 = lines[j].y2()
            if(bx1 == bx2):
                bx1 = bx1 + 0.01
            k1 = (by2 - by1)/(bx2 - bx1)      # 第二条直线斜率
            b1 = by1 - k1*bx1                 # 第二条直线截距
    for i in range(0,img.height()):
        for j in range(0,img.width()):
            if k0*j+b0<=i and k1*j+b1<=i:
                img.set_pixel(j,i,(255, 255, 255))
            else:
                img.set_pixel(j,i,(0, 0, 0))
    for l in lines:
        img.draw_line(l.line(), color = (255, 0, 255))
    print("FPS %f" % clock.fps())
 

评论 4 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

long19960208

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值