基于OpenMV平台进行开发
特别注意:
1.适用于直线行驶过程中
2.保证前方没有障碍物
(障碍物识别正在开发过程中)
算法原理:
1.图像hough变换获取直线
2.判断道路
获取图像结果:
识别道路结果:
(存在时间误差)
程序代码:
import sensor, image, time
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QQVGA)
clock = time.clock()
k0 = 0
b0 = 0
k1 = 0
b1 = 0
while(True):
clock.tick()
img = sensor.snapshot()
lines = img.find_lines(threshold = 1000, theta_margin = 25, rho_margin = 25)
for i in range(0,len(lines)-1):
for j in range(i+1,len(lines)):
ax1 = lines[i].x1()
ay1 = lines[i].y1()
ax2 = lines[i].x2()
ay2 = lines[i].y2()
if(ax1 == ax2):
ax1 = ax1 + 0.01
k0 = (ay2 - ay1)/(ax2 - ax1) # 第一条直线斜率
b0 = ay1 - k0*ax1 # 第一条直线截距
bx1 = lines[j].x1()
by1 = lines[j].y1()
bx2 = lines[j].x2()
by2 = lines[j].y2()
if(bx1 == bx2):
bx1 = bx1 + 0.01
k1 = (by2 - by1)/(bx2 - bx1) # 第二条直线斜率
b1 = by1 - k1*bx1 # 第二条直线截距
for i in range(0,img.height()):
for j in range(0,img.width()):
if k0*j+b0<=i and k1*j+b1<=i:
img.set_pixel(j,i,(255, 255, 255))
else:
img.set_pixel(j,i,(0, 0, 0))
for l in lines:
img.draw_line(l.line(), color = (255, 0, 255))
print("FPS %f" % clock.fps())