自动驾驶
文章平均质量分 82
大道@至简
大道至简
展开
-
BEVFormer详解
BEVFormer 是将Transformer架构的自注意机制与BEV视图中3D检测结合起来的一种纯视觉目标检测方案。对于纯视觉的BEV检测方案,其中的重中之重就是如何将2D的图像特征映射到3D空间的BEV栅格,既然是映射关系,那就有前行投影和反向查询两种机制。前向投影是基于深度估计的方法,参考基于深度估计的BEV视图转换方法,典型代表为LSS。反向查询方法思路为先将BEV栅格在Z方向上进行lift提升,然后再映射到图像特征图上进行特征查询。BEVFormer 就是基于这种机制进行2D图像特征到3D空间的B原创 2025-04-02 16:12:37 · 1287 阅读 · 0 评论 -
自动驾驶中基于深度估计的BEV视图转换方法
是自动驾驶BEV中核心。其目的就是在BEV 3D空间中的特征如何精准的对应到2D图像的特征上。例如BEV空间中的格子对应的是一个行人,那么希望这个格子所获得的特征就是图像中的2D行人特征,而不是来自其他地方。原创 2025-02-27 00:36:24 · 515 阅读 · 0 评论 -
自动驾驶之BEVDet
**视图转换是BEV的核心。目的就是如何从图像空间中提取BEV空间所需要的特征。**假如某个BEV格子所对应空间有个锥桶,那么这个格子里填充的一定是用来描述这个锥桶的特征值,而不是远方天空或红绿灯的特征值原创 2025-02-26 23:26:13 · 482 阅读 · 0 评论 -
自动驾驶之BEV概述
(mean Average Precision)是目标检测中常用的性能指标,它对Precision-Recall(P-R)曲线进行采样,计算每个类别出平均的Precision。有的方法则是针对具体的任务,比如3D物体检测,直接生成稀疏的BEV视图下的感知结果,比如DETR3D和PETR。自动驾驶需要目标在3D空间的位置信息,传统检测为2D图像上检测目标然后IPM投影到3D。输出:BEV视图下的各种感知结果,比如物体,道路,车道线,语义栅格等。与mAP相比,NDS可以更全面的评价3D目标检测算法的优劣。原创 2025-02-20 00:18:13 · 1006 阅读 · 0 评论 -
BEV 之 LSS概要
显示估计图像下采样(16倍)后的特征点深度,将2D图像提升到3D空间,得到图像特征的视锥(点云)。原创 2024-07-10 17:27:43 · 481 阅读 · 0 评论
分享