高数 03[01-05]习题课

 

微分中值定理与导数的应用
例题分析
一、选择题
1.f(x)=(  C  )[1,1]. 
A.1x ;B.|x|;C.1x 2 ;D.x1 
3[a,b],(a,b),f(a)=f(b)ξ(a,b)使f  (ξ)=0.A.f(x)=1x x=0B.f(x)=|x|,f  (0)C.f(x)=1x 2 ,[1,1](1,1)f  (x)=2xf(1)=f(1)=0D.f(x)=x1,[1,1],(1,1)f  (x)=1,f(1)f(1) 

2.[1,e](  B  ) 
A.lnlnx;B.lnx;C.1lnx ;D.ln(2x). 
A.f(x)=lnlnx[1,e],f(1)=ln0,B.f(x)=lnx[1,e],(1,e),f  (x)=1x C.f(x)=1lnx ,f(1)=10 ,D.f(x)=ln(2x),[2,e] 

3.f(x)=xlnx,f(x)(  A  ) 
A.(0,1e );B.(1e ,+);C.(0,+);D.(0,+) 
:f(x)=xlnx(0,+),f  (x)=lnx+1=0,x=1e x(0,1e ),f  (x)<0,f(x)x(1e ,+),f  (x)>0,f(x) 

4.y=xarctanx(,+)(  A  ). 
A.;B.;C.;D. 
y  =111+x 2  0y(,0)(0,+)yx=0,y(,+) 

5.y=ln(1+x 2 )(  C  ) 
A.(5,5);B.(,0);C.(0,+);D.(,+) 
:y=ln(1+x 2 )(,+)y  =11+x 2  (1+x 2 )  =2x1+x 2  >0x>0 

6.(  C  ) 
A.f(x).f(x);B.x 0 f(x),x 0 f(x);C.f(x)x 0 ,f  (x 0 ),f  (x 0 )=0;D.f(x)x 0 f  (x 0 ). 
y=|x|,x=0,,x=0y=|x|ADy=x 3 y  =3x 2 ,x=0y=x 3 B.C. 

7.f(x)[a,b],f(a)=f(b),f(x),(a,b)(  C  ) 
A.;B.C.;D.ξ,使f  (ξ)=0 
f(x)[a,b],f(x)[a,b],AB.(a,b),D.C 

8.f(x)=13 x 3 x,x=1f(x)[2,2](  B  ) 
A..;B.;C.;D. 
f  (x)=x 2 1f  (x)=0,x 1 =1,x 2 =1f  (x)=2x,f  (1)=2>0,x=1f(2)=23 ,f(1)=23 ,f(1)=23 ,f(2)=23 x=1B. 

9.a<x<b,f  (x)<0,f  (x)>0线y=f(x)(a,b)沿x(  A  ) 
A.;B.;C.;D.. 

10.线y=6x24x 2 +x 4 (  A  ) 
A.(2,2);B.(,0);C.(0,+);D.(,+) 
y  =648x+4x 3 y  =12(x 2 4)<0x(2,2) 

二、填空题
11.f(x)[a,b],(a,b),(a,b)ξ,使f(b)f(a)=f  (ξ)(ba) − − − − − − − − −   

12.y=ln(x+1)[0,1]ξ=1ln2 1 − − − − − − −   
:f  (x)=11+x f(0)=0,f(1)=ln2f  (ξ)=f(1)f(0)10 =ln211+ξ =ln2ξ=1ln2 1 

13.y=2 x 2  ,  (0,+)   − − − − − − − −   
y=2 x 2  (,+)y  =2 x 2  ln22x>0x>0 

14.y=f(x)x=x 0 ,x 0 f  (x 0 )=  0   − − −   

15.y=2x 3 3x 2 (1x4)  y=80   − − − − − − −  ,  x=1   − − − − − − − −   
y  =6x 2 6x=6x(x1)=0x 1 =0,x 2 =1,y 1 =0,y 2 =1y  =12x6y  | x=0 =6<0,,y  | x=1 =6>0,,y| x=1 =5;y| x=4 =80y max =max(5,0,1,80)=80y min =min(5,0,1,80)=5 

16.y=2x 3 3x 2 ,y  x=0   − − − − − −  ,  x=1   − − − − − −   
y=2x 3 3x 2 (,+)y  =6x 2 6x=6x(x1)=0x 1 =0,y 1 =0,x 2 =1,y 2 =1y  =12x6y  | x=0 =6<0,y  | x=1 =6>0, 

17.线y=x 3 3x 2 +6x  (1,4)   − − − − − −   
colorbluef  (x 0 )=0,f  (x)x 0 .y=x 3 3x 2 +6x(,+)y  =3x 2 6x+6y  =6(x1)=0x=1x<1,y  <0x>1,y  >0x=1,y=4. 

三、解答题
21.|sinx 2 sinx 1 ||x 2 x 1 |. 
:f(x)=sinx,x 1 =x 2 ,|sinx 2 sinx 1 ||x 2 x 1 |.x 1 x 2 x 1 <x 2 f(x)=sinx[x 1 ,x 2 ],f(x)[x 1 ,x 2 ]f  (ξ)=sinx 2 sinx 1 x 2 x 1  =cosξ|sinx 2 sinx 1 ||x 2 x 1 | =|cosξ|1|sinx 2 sinx 1 ||x 2 x 1 |. 

23.lim x0 lncosxx 2   
使lim x0 lncosxx 2  =lim x0 1cosx (sinx)2x =12 lim x0 tanxx =12  

24.lim xπ2  lnsinx(π2x) 2   
使lim xπ2  lnsinx(π2x) 2  =lim xπ2  1sinx cosx2(π2x)(2) =14 lim xπ2  (cosxsinx )  (2xπ)   =14 lim xπ2  1sin 2 x 2 =18  

25.lim x0 +  x   lnx 
0lim x0 +  x   lnx=lim x0 +  lnx1x     =lim x0 +  1x 12 1xx     =lim x0 +  2x   =0 

26.lim x0 (1x 1e x 1 ) 
,lim x0 (1x 1e x 1 )=lim x0 e x 1xx(e x 1) =lim x0 e x 1e x 1+xe x  =lim x0 e x 2e x +xe x  =lim x0 12+x =12  

28.lim x0 +  x x . 
0 0 lim x0 +  x x =lim x0 +  e lnx x  =lim x0 +  e xlnx =e lim x0 +  xlnx =e lim x0 +  lnx1x   =e lim x0 +  1x 1x 2    =e lim x0 +  x =e 0 =1 

29.y=xln(x+1),线. 
y=xln(x+1)(1,+)y  =(xln(x+1))  =11x+1 =xx+1 y  =0,x 1 =0,y 1 =0y  >0,x>0,y  <0,1<x<0,x(1,0]x[0,+)y  =x+1x(x+1) 2  =1(x+1) 2  y  | x=0 =1>0,(0,0),0y  >0,线(1,0],[0,+)y=0,线(1,+) 

30.x>ln(1+x)(x>0). 
:f(x)=xln(1+x)x(1,+)f(x)(1,+)f  (x)=111+x =x1+x x=0,f(0)=0x>0f  (x)>0,f(x)x(0,+)[0,+)f(x)=xln(1+x)>f(0)=0x>ln(1+x)(x>0) 

练习题
一、选择题
1.f(x)=x3x − − − − −   [0,3]ξ(  D  ) 
A.0;B.3;C.32 ;D.2. 
f  (x)=3x − − − − −   x23x − − − − −    =3(2x)23x − − − − −    =0x=2 

2.(  B  ) 
A.y=|x|,[1,1];B.y=1x ,[1,2];C.y=x 2  − −   3 ,(1,1];D.y=x1x 2  ,[2,2]. 
A.y| x=0 B.[1,2],(1,2),C.y  =23x   3  ,x=0D.x=±1 

3.f  (x 0 )=0,x 0 y=f(x)(  C  ) 
A.;B.;C.;D.. 

4.(  C  ) 
A.x 0 f(x),f  (x 0 )=0B.f  (x 0 )=0x 0 f(x)C.x 0 f(x),f  (x 0 )D.f(x)(a,b),,. 
A.f(x)=|x|,x=0B.f(x)=x 3 ,f  =3x 2 ,x=0C.f(x)=|x|,x=0D.f(x)=C,f max (x)=f min (x) 

5.线y=(x1) 3 1(  B  ) 
A.(2,0);B.(1,1);C.(0,2);D. 
y  =3(x1) 2 =0x=1,y=1y  =6(x1)x<1,y  <0;x>1,y  >0(1,1). 

6.f  (x 0 )=0线y=f(x)(x 0 ,f(x 0 ))(  D  ) 
A.;B.;C.;D. 
:f(x)=x 4 ,f  (x)=12x 2 ,f  (0)=0.x0,f  (x)=12x 2 >0.f(0)=0,(0,f(0))=(0,0).f(x)=x   3 ,(0,f(0))=(0,0)线f  (0)f  (x 0 )=0(0,f(0))线y=f(x) 

7.线y=x 2 x +4lnx线(  C  ) 
A.1;B.0;C.4;.1. 
y=x 2 x +4lnx(0,+)y  =x+4x y  =14x 2  =0x=2,y  | x=2 =4y  =8x 3  ,y  | x=2 =1>0,x=2,y  | x=2 =4 

二、填空题
1.y=(x+1) 3   (,+)   − − − − − − − − − − −   
y=(x+1) 3 (,+)y  =3(x+1) 2 0 

2.线y=x 3 3x+1  (0,1)   − − − − − −   
y  =3x 2 3y  =6x=0x=0,y=1x>0,y  >0;x<0,y  <0(0,1) 

3.y=x 3 3x+1  (1,1)   − − − − − − − −   
y=x 3 3x+1(,+)y  =3x 2 3<01<x<1线(1,1) 

4.y=x 3 3x+1  1   − − − −   
y=x 3 3x+1(+)y  =3x 2 3=0x 1 =1,x 2 =1,y 1 =3,y 2 =1y  =6x>0,x>0x=1,y=1,y=1 

5.线y=x 3 3x+1  (,0)   − − − − − − − −   
y=x 3 3x+1(,+)y  =3x 2 3y  =6x<0线()x<0x(,0)线. 

三、解答题
1.f(x)=x+cosx(0x2π). 
:f  (x)=(x+cosx)  =1sinx0f(x)(0x2π) 

2.f(x)=x 2 lnx 2  
:f(x)=x 2 lnx 2 (,0)(0,+)f  (x)=2x2xx 2  =2(x1x )f  (x)=0x 1 =1,x 2 =1x(,1)(0,1),f  (x)<0,x(1,0)(1,+),f  (x)>0, 

3.y=x 2 54x (x<0). 
:y  =2x+54x 2  y  =0,:x=3,y=27y  =2108x 3  y  | x=3 =6>0,x=3,y=27y min =min(27)=27 

4.线y=e arctanx . 
y=e arctanx (,+infty)y  =e arctanx (arctanx)  =e arctanx 11+x 2  =e arctanx 1+x 2  y  =e arctanx 1+x 2  (1+x 2 )e arctanx (2x)(1+x 2 ) 2  =e arctanx (12x)(1+x 2 ) 2  y  =0,x=12 x>12 ,y  <0线x<12 ,y  >0线x=12 ,y=e arctan12   

5.y=x 3 3x 2 1. 
y=x 3 3x 2 1(,+)y  =3x 2 6x=3x(x2)=0x 1 =0,y 1 =1;x 2 =2,y 2 =5x(,0][1,+),y  >0,x(0,1),y  <0,y  =6x6=6(x1)=0x=1,y=3x>1,y  >0,线;x<1,y  <0线;(1,3)y  | x=0 =6<0,y=1y  | x=2 =6>0,y=5 

第一部分 导数与微分
一、导数和微分的概念及应用
f  (x)=lim Δx0 f(x+Δx)f(x)Δx  
Δx0 + ,f  + (x) 
Δx0  ,f   (x) 

df(x)=f  (x)dx 
 

应用:
(1)利用导数定义解决的问题
1)推出三个基本的导数公式及求导数法则:
(C)  =0;(lnx)  =1x ;(sinx)  =cosx 
 
2)求分段函数在分界点处的导数,及某些特殊函数在特殊点处的导数;
3)由导数定义证明一些命题
(2) 用导数定义求极限
(3)微分在近似计算与误差估计中的应用

1.f  (x 0 )lim Δx0 f(x 0 +Δx+(Δx) 2 )f(x 0 )Δx  
lim Δx0 f(x 0 +Δx+(Δx) 2 )f(x 0 )Δx =lim Δx0 [f(x 0 +Δx+(Δx) 2 )f(x 0 )(1+Δx) 1+ΔxΔx ]=lim Δx0 [f(x 0 +Δx+(Δx) 2 )f(x 0 )(1+Δx)Δx (1+Δx)]=lim Δx0 [f(x 0 +Δx+(Δx) 2 )f(x 0 )(Δx+(Δx) 2 ) (1+Δx)]=f  (x 0 )lim Δx0 (1+Δx)=f  (x 0 )1=f  (x 0 ) 

2.f(1)=0f  (1),lim x0 f(sin 2 x+cosx)(e x 1)tanx  
:lim x0 f(sin 2 x+cosx)(e x 1)tanx =lim x0 f  (sin 2 x+cosx)(sin 2 x+cosx)  e x tanx+(e x 1)1cos 2 x  =lim x0 f  (1)(2sinxcosxsinx)e x sinxcosxcos 2 x +(e x 1)1cos 2 x  =lim x0 f  (1)sinxcos 2 x(2cosx1)e x sinxcosx+(e x 1) =lim x0 f  (1)xcos 2 x(2cosx1)e x xcosx+x =lim x0 f  (1)cos 2 x(2cosx1)e x cosx+1 =lim x0 f  (1)1 2 (211)11+1 =f  (1)2  

二、导数和微分的求法
1.正确使用导数及微分公式和法则
2.熟练掌握求导方法和技巧
(1)求分段函数的导数
注意讨论界点处左右导数是否存在和相等
(2)隐函数求导法,对数微分法
(3)参数方程求导法,极坐标方程求导
(4)复合函数求导法(可利用微分形式不变性)
(5)高阶导数的求法,逐次求导,间接求导法,利用莱布尼兹公式

第二部分
中值定理及导数的应用
一、微分中值定理及其应用
1.微分中值定理及其应用
f  (ξ)=0 
f  (ξ)=f(b)f(a)ba  
2.微分中值定理的主要应用
(1)研究函数或导数的性态
(2)证明恒等式或不等式
(3)证明有关中值定理的结论
3.有关中值问题的解题方法
利用逆向思维,设置辅助函数.一般解题方法:
(1)证明含一个中值的等式或根存在,多用罗尔定理,可用原函数法找辅助函数.
(2)若结论中含有两个或两个以上的中值,必须多次应用中值定理.
(3)若已知条件中含有高阶导数,有时也可考虑对导数用中值定理
(4)若结论为不等式,要注意适当放大或缩小的技巧

1.f(x)(a,b),|f  (x)|Mf(x)(a,b). 
:x 0 (a,b),x 0 x(a,b),f(x)x 0 ,x,f  (ξ)=f(x)f(x 0 )xx 0  |f(x)|=|f(x 0 )+f  (ξ)(xx 0 )||f(x 0 )|+|f  (ξ)||xx 0 ||f(x 0 )|+M(ba)=K()x(a,b),|f(x)|K 

2.f(x)[0,1],(0,1),f(1)=0,ξ(0,1),使f  (ξ)=2f(ξ)ξ  
:φ(x)=x 2 f(x)φ(x)[0,1],ξ(0,1),使φ  (ξ)=2ξf(ξ)+ξ 2 f  (ξ)=0f  (ξ)=2f(ξ)ξ  

二、导数应用
1.研究函数的性态
增减、极值、凹凸、拐点、渐近线、曲率
2.解决最值问题
目标函数的建立与简化
最值的判定问题
3.其他应用:求不定式极限;几何应用;相关的变化率;证明不等式;研究方程的根

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值