对于给定的邻接矩阵 A,我们可以用前面给出的可达矩阵 Warshall 算法求 出 A 所表示的图的可达矩阵 P。对于可达矩阵 P 来说,如果 P 的所有元素均为 1, 则所给的有向图是强连通的;对于 P 的所有元素(除主对角线元素外)Pij 来说, 均有:Pij+Pji>0,则所给有向图是单向连通的。当所给有向图既不是强连通的, 又不是单向连通的时候,我们改造邻接矩阵为:对于矩阵 A 中所有的元素(除主 对角线的元素外)aij,若 aij=1 或 aji=1,则 1 Þ aij 且 1 Þ aji。对于这样改造之后 所得到的新的矩阵 A’(A’相当于原有向图忽略方向之后所得到的无向图的邻 接矩阵),再用前面所述的方法进行判断,当 P’的所有元素(除主对角线的元 素外)均为 1 时,原有向图是弱连通图;否则,原有向图是不连通的
原文链接:https://blog.csdn.net/weixin_57202646/article/details/118770196
Warshall 算法求可达矩阵,根据可达矩阵元素判断是强连通图or单向连通图or弱连通图?
本文介绍了如何利用Warshall算法计算可达矩阵来分析有向图的连通性,包括强连通、单向连通和弱连通的判断条件,并提到了将有向图转换为无向图后进行弱连通性检测的过程。
摘要由CSDN通过智能技术生成